
Wing IDE 101 Reference Manual

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, and "The Intelligent Development Environment" are trademarks or
registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Wingware shall not be liable for technical or editorial errors or omissions
contained in this document; nor for incidental or consequential damages resulting from
furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2014 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

Contents
Wing IDE 101 Reference Manual 1

Introduction 1

1.1. Supported Platforms 1

1.2. Supported Python versions 1

1.3. Prerequisites for Installation 2

1.4. Installing Wing IDE 2

1.5. Running Wing IDE 3

1.6. User Settings Directory 3

1.7. Upgrading 4

Compatibility Notes 4

1.7.1. Fixing a Failed Upgrade 5

1.8. Installation Details and Options 5

1.8.1. Linux Installation Notes 6

1.8.2. Remote Display on Linux 7

1.8.3. Installing Extra Documentation 8

1.9. Removing Wing IDE 8

Customization 8

2.1. Keyboard Personalities 9

2.2. User Interface Options 10

2.2.1. Display Style and Colors 10

Color Configuration 10

Add Color Palettes 10

2.2.2. User Interface Layout 10

2.2.3. Altering Text Display 12

2.3. Preferences 12

Source Code Editor 12

3.1. Syntax Colorization 12

3.2. Right-click Editor Menu 13

3.3. Navigating Source 13

3.4. File status and read-only files 13

3.5. Transient, Sticky, and Locked Editors 14

3.6. Indentation 14

3.6.1. How Indent Style is Determined 14

3.6.2. Indentation Preferences 14

3.6.3. Auto-Indent 15

3.6.4. The Tab Key 15

3.6.5. Changing Block Indentation 17

3.7. Brace Matching 17

3.8. Support for files in .zip or .egg files 18

3.9. Notes on Copy/Paste 18

Smart Copy 19

Search/Replace 19

4.1. Toolbar Quick Search 19

4.2. Search Tool 19

4.3. Wildcard Search Syntax 20

Interactive Python Shell 21

5.1. Python Shell Options 22

Debugger 22

6.1. Setting Breakpoints 22

6.2. Starting Debug 22

6.3. Debugger Status 23

6.4. Flow Control 23

6.5. Viewing the Stack 24

6.6. Viewing Debug Data 24

6.6.1. Stack Data View 25

6.6.1.1. Popup Menu Options 26

6.6.2. Problems Handling Values 26

6.7. Debug Process I/O 28

6.8. Debugging Multi-threaded Code 28

6.9. OS X Debugging Notes 29

System-Provided Python 29

MacPorts Python 29

Debugging 32-bit Python on a 64-bit System 29

Source Code Analysis 29

7.1. How Analysis Works 30

7.2. Static Analysis Limitations 30

7.3. Helping Wing Analyze Code 31

7.4. Analysis Disk Cache 32

Trouble-shooting Guide 33

8.1. Trouble-shooting Failure to Start 33

8.2. Speeding up Wing 34

8.3. Trouble-shooting Other Known Problems 35

License Information 36

9.1. Wing IDE Software License 36

9.2. Open Source License Information 41

Introduction
Thanks for choosing Wingware's Wing IDE 101! This manual will help you get started
and serves as a reference for the entire feature set.

The manual is organized by major functional area of Wing IDE, including
customization, source code editor, search/replace features, python shell, debugger
and source code analysis

The rest of this chapter describes how to install and start using Wing IDE 101. See
also the quick start guide and tutorial.

1.1. Supported Platforms
This version of Wing IDE is available for Microsoft Windows, Linux, and Mac OS X.

Microsoft Windows

Wing IDE supports Windows XP, 2003 Server, Vista, Windows 7, and Windows 8 for
Intel processors. Earlier versions of Windows are not supported and will not work.

Linux/Intel

Wing IDE runs on Linux versions with glibc version 2.6 or later (such as Ubuntu 10+,
RHEL 6.4+, and Debian 5.0+).

Mac OS X

Wing IDE runs on Mac OS X 10.6+ as a native application.

1.2. Supported Python versions
Wing supports CPython 2.5 through 3.4, Stackless Python 2.5 through 3.2, and
cygwin Python 2.5 through 2.7. Wing can also be used with PyPy, IronPython, and
Jython, but the debugger will not work with these implementations of Python.

Wing's debugger is pre-built for each of these versions of Python with and without
--with-pydebug. Both 32-bit and 64-bit compilations are supported. CPython
--with-framework builds are also supported on OS X. If necessary, it is possible for
customers to compile Wing's debugger against other custom versions of Python.

Before installing Wing, you may need to download Python and install it if you do not
already have it on your machine.

On Windows, Python must be installed using one of the installers from the python.org
(or by building from source if desired).

On Linux, most distributions come with Python. Installing Python is usually only
necessary on a custom-built Linux installation.

Introduction

1

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://python.org/download

On OS X, an Python built by Apple is installed by default. Other Python versions are
available from python.org and from MacPorts, Fink, or Homebrew

1.3. Prerequisites for Installation
To run Wing IDE, you will need to obtain and install the following, if not already on
your system:

• A downloaded copy of Wing IDE
• A supported version of Python
• A working TCP/IP network configuration (for the debugger; no outside access to

the internet is required)

1.4. Installing Wing IDE
Before installing Wing IDE, be sure that you have installed the necessary
prerequisites. If you are upgrading from a previous version, see Upgrading first.

Note: The installation location for Wing IDE is referred to as WINGHOME. On OS X
this is the name of Wing's .app folder.

Windows

Install Wing IDE by running the downloaded executable. Wing's files are installed by
default in C:\Program Files\Wing IDE 101 5.0, but this location may be modified
during installation. Wing will also create a User Settings Directory in the location
appropriate for your version of Windows. This is used to store preferences and other
settings.

The Windows installer supports a /silent command line option that uses the default
options, including removing any prior install of version 5.0 of Wing IDE. If a prior install
is removed, a dialog with a progress bar will appear. You can also use a
/dir=<dir name> option to specify an alternate installation directory.

Linux

Use the RPM, Debian package, or tar file installer as appropriate for your system type.
Installation from packages is at /usr/lib/wingide-101-5 or at the selected location
when installing from the tar file. Wing will also create a User Settings Directory in
~/.wing101-5, which is used to store preferences and other settings.

For more information, see the Linux installation details.

Mac OS X

Introduction

2

http://python.org/download
http://wingware.com/downloads
http://wingware.com/doc/install/supported-python-versions
http://wingware.com/doc/install/prerequisites-for-installation
http://wingware.com/doc/install/prerequisites-for-installation
http://wingware.com/doc/install/upgrading
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/linux-installation-detail

On OS X, Wing is installed simply by opening the distributed disk image and dragging
to the Applications folder, and optionally from there to the task bar.

1.5. Running Wing IDE
For a quick introduction to Wing's features, refer to the Wing IDE Quickstart Guide.
For a more gentle in-depth start, see the Wing IDE Tutorial.

On Windows, start Wing IDE from the Program group of the Start menu. You can
also start Wing from the command line with wing-101.exe (located inside the Wing
IDE installation directory).

On Linux/Unix, just execute wing-101-5.0 (or wing-101 located inside the Wing IDE
installation directory).

On Mac OS X, start Wing IDE by double clicking on the app folder or from the
command line using wing-101 command inside the Wing IDE .app folder.

1.6. User Settings Directory
The first time you run Wing, it will create your User Settings Directory automatically.
This directory is used to store your license, preferences, auto-save files, recent lists,
and other files used internally by Wing. If the directory cannot be created, Wing will
exit.

The settings directory is created in a location appropriate to your operating system.
The location is listed as your Settings Directory in the About Box accessible from
the Help menu.

These are the locations used by Wing:

Linux/Unix -- ~/.wing101-5 (a sub-directory of your home directory)

Windows -- In Wing 101 5 within the per-user application data directory. The location
varies by version of Windows. For Windows 2000 and XP running on c: with an
English localization the location is:

c:\Documents and Settings\${username}\Application Data\Wing 101 5

For Vista running on c: with an English localization the location is:

c:\Users\${username}\AppData\Roaming\Wing 101 5

Wing also creates a Cache Directory that contains the source analysis cache. This is
often but not always in the same location as the above. On Windows, this directory is

Introduction

3

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial

usually in the per-user directory under Local Settings on 2000 and XP and under
Local on Vista. This directory is also listed in the About Box.

1.7. Upgrading
If you are upgrading within the same minor version number of Wing (for example from
5.0 to 5.0.x) this will replace your previous installation. Once you have upgraded, your
previous preferences and settings should remain and you should immediately be able
to start using Wing.

If you are upgrading across major releases (for example from 4.1 to 5.0), this will
install the new version along side your old version of Wing.

New major releases of Wing will read and convert any existing Wing preferences,
settings, and projects. Projects should be saved to a new name for use with the new
major release since they cannot be read by earlier versions.

To install an upgrade, follow the steps described in Installing

Compatibility Notes

The following compatibility notes may be useful to users of earlier versions of Wing
IDE:

• File Sets from Wing IDE 4 are now called File Filters. File Sets in Wing 5 are a
new feature for creating named sets of files.

• Auto-editing is on by default except for auto-entering spaces and block
management with the colon key

• Preferences and some menus have been reorganized
• File Properties have changed to make use of Launch Configurations
• OS Commands has been redesigned to use Named Entry Points and

Launch Configurations.
• The Python Shell now starts with current directory set according to the project or

main debug file configuration
• A few key bindings have changed
• Accelerators may have changed from Wing 4 and are no longer available on OS

X because Qt follows Mac user interface guidelines, except when the
Display Style preference is used to select non-native display

• More project data is stored in the shared branch of two-file projects (such as
Python Path and OS Commands settings)

• Support for Python < 2.5 has been dropped
• New projects created with Wing Pro are always shared (two file) projects. Only

the .wpr file should be checked into revision control.

Introduction

4

http://wingware.com/doc/install/installing

• For other compatibility details, see the Changes sections of the Change Log on
the downloads page.

1.7.1. Fixing a Failed Upgrade

In rare cases upgrading may fail to overwrite old files, resulting in random or bizarre
behaviors and crashing. The fix for this problem is to completely uninstall and
manually remove remaining files before installing the upgrade again.

Windows

To uninstall on Windows, run the Add/Remove Programs control panel to uninstall
Wing IDE. Then go into the directory where Wing was located and manually remove
any remaining folders and files.

Mac OS X

On Mac OS X, just drag the entire Wing IDE application folder to the trash.

Linux Debian

If you installed Wing IDE for Linux from Debian package, issue the command
dpkg -r wingide5. Then go into /usr/lib/wingide5 and remove any remaining files
and directories.

Linux RPM

If you installed Wing IDE for Linux from RPM, issue the command rpm -e wingide5.
Then go into /usr/lib/wingide5 and remove any remaining files and directories.

Linux Tar

If you installed Wing IDE for Linux from the tar distribution, find your Wing installation
directory and run the wing-uninstall script located there. Once done, manually
remove any remaining files and directories.

If this procedure does not solve the problem, try moving aside the User Settings
Directory and then starting Wing. If this works, try restoring files from the old user
settings directory one by one to find the problem. Key files to try are license.act*,
preferences and recent*. Then submit a bug report to support@wingware.com with
the offending file.

1.8. Installation Details and Options
This section provides some additional detail for installing Wing and describes
installation options for advanced users.

Introduction

5

http://wingware.com/downloads/
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

1.8.1. Linux Installation Notes

On Linux, Wing can be installed from RPM, Debian package, or from tar archive. Use
the latter if you do not have root access on your machine or wish to install Wing
somewhere other than /usr/lib/wingide-101-5. Be sure to use the 64-bit packages if
you are on a 64-bit system.

Installing from RPM:

Wing can be installed from an RPM package on RPM-based systems, such as
RedHat and Mandriva. To install, run rpm -i wingide-101-5-5.0.9-1.i386.rpm as root
or use your favorite RPM administration tool to install the RPM. Most files for Wing are
placed under the /usr/lib/wingide-101-5 directory and the wing-1015.0 command is
placed in the /usr/bin directory.

Installing from Debian package:

Wing can be installed from a Debian package on Debian, Ubuntu, and other
Debian-based systems.

You will need to install enscript before installing Wing, if it's not already on your
system.

To install, run dpkg -i wingide-101-5_5.0.9-1_i386.deb

as root or use your favorite package administration tool to install. Most files for Wing
are placed under the /usr/lib/wingide-101-5 directory and the wing-1015.0 command
is placed in the /usr/bin directory.

Installing from Tar Archive:

Wing may also be installed from a tar archive. This can be used on systems that do
not use RPM or Debian packages, or if you wish to install Wing into a directory other
than /usr/lib/wingide-101-5. Unpacking this archive with
tar -zxvf wingide-101-5.0.9-1-i386-linux.tar.gz will create a
wingide-101-5.0.9-1-i386-linux directory that contains the wing-install.py script and
a binary-package.tar file.

Running the wing-install.py script will prompt for the location to install Wing, and the
location in which to place the executable wing-1015.0. These locations default to
/usr/local/lib/wingide-101 and /usr/local/bin, respectively. The install program must
have read/write access to both of these directories, and all users running Wing must
have read access to both.

Debugging 32-bit Python on 64-bit Systems

On a 64-bit system where you need to debug 32-bit Python, you will need to install the
32-bit version of Wing. This version can also debug 64-bit Python.

Introduction

6

Installing the 32-bit version of Wing may require installing some compatibility
packages as follows:

On 64-bit Ubuntu and Debian systems, you need to first install the 32 bit compatibility
libraries. This is the ia32-libs package on Ubuntu. Then install the 32-bit Wing with
the command dpkg -i --force-architecture --force-depends
wingide-101-5_5.0.9-1_.i386.deb The package contains what you need to run your
debug process with 64-bit Python but Wing itself runs as a 32-bit application.

On CentOS 64-bit systems, installing the libXtst.i386 package with yum provides the
necessary 32 bit support.

On Arch linux, the necessary package is instead named lib32-glibc.

1.8.2. Remote Display on Linux

Wing for Linux can be displayed remotely by enabling X11 forwarding in ssh as
described here.

In summary: You need to send the -X option to ssh when you connect from the
machine where you want windows to display to the machine where Wing will be
running, and you need to add X11Forwarding yes to your ssh configuration (usually
in ~/.ssh/config) on the machine where Wing will be running.

Speeding up the Connection

To improve performance, in most cases you should leave off the -C option for ssh,
even though it is often mentioned in instructions for setting up X11 forwarding. The
compression that is enabled with -C is only useful over extremely slow connections
and otherwise increases latency and reduces responsiveness of the GUI.

Another option to try is -Y (trusted X11 port forwarding) instead of -X (untrusted X11
port forwarding) as this may reduce overhead as well. However, this disabled security
options so it's a good idea to understand what it does before using it.

If you are displaying to Windows, the choice of X11 server software running on
Windows can make a huge difference in performance. If the GUI seems very slow, try
a different X11 server.

Other Options

Other options for displaying Wing remotely from Linux include:

• XRDP -- implements the protocol for Windows Remote Desktop.
• NoMachine -- Another free remote desktop toolkit.

Introduction

7

http://unix.stackexchange.com/questions/12755/how-to-forward-x-over-ssh-from-ubuntu-machine
http://www.xrdp.org/
https://www.nomachine.com/

1.8.3. Installing Extra Documentation

On Windows, Wing looks for local copies of Python documentation in the Doc
directory of the Python installation(s), either in CHM or HTML format.

If you are using Linux or OS X, the Python manual is not included in most Python
installations, so you may wish to download and install local copies.

To do this, place the top-level of the HTML formatted Python manual (where
index.html is found) into python-manual/#.# within your Wing IDE installation.
Replace #.# with the major and minor version of the corresponding Python interpreter
(for example, for the Python 2.7.x manual, use python-manual/2.7).

Once this is done, Wing will use the local disk copy rather than going to the web when
the Python Manual item is selected from the Help menu.

1.9. Removing Wing IDE
Windows

On Windows, use the Add/Remove Programs control panel, select Wing IDE 101 5
and remove it.

Linux/Unix

To remove an RPM installation on Linux, type rpm -e wingide-101-5.

To remove an Debian package installation on Linux, type dpkg -r wingide-101-5.

To remove a tar archive installation on Linux/Unix, invoke the wing-uninstall script in
the Wing IDE installation directory. This will automatically remove all files that appear
not to have been changed since installation, It will ask whether it should remove any
files that appear to be changed.

Mac OS X

To remove Wing from Mac OS X, just drag its application folder to the trash.

Customization
There are many ways to customize Wing IDE in order to adapt it to your needs or
preferences. This chapter describes the options that are available to you.

Customization

8

http://docs.python.org/download.html

Note

These are some of the areas of customization that are available:

• The editor can run with different personalities such as VI/Vim, Emacs,
Visual Studio, Eclipse, and Brief emulation

• The action of the tab key can be configured
• Many other options are available through preferences

2.1. Keyboard Personalities
The default keyboard personality for Wing implements most common keyboard
equivalents found in a simple graphical text editor. This uses primarily the graphical
user interface for interacting with the editor and limits use of complex keyboard-driven
command interaction.

Note

Emulation of Other Editors

The first thing any Vim, Emacs, Visual Studio, Eclipse, or Brief user will want to
do is to set the keyboard personality to emulate their editor of choice. This is
done with the Edit > Keyboard Personality menu or with the
User Interface > Keyboard > Personality preference.

Under the Vim and Emacs personalities, key strokes can be used to control most of
the editor's functionality, using a textual interaction 'mini-buffer' at the bottom of the
IDE window where the current line number and other informational messages are
normally displayed.

Related preferences that alter keyboard behaviors include Tab Key Action and
Completion Keys for the auto-completer.

Customization

9

2.2. User Interface Options
Wing provides many options for customizing the user interface to your needs.
Preferences can be set to control the number and type of windows, layout of tools and
editors, text fonts and colors, type of toolbar, and the overall display style (including
ability to select background color).

2.2.1. Display Style and Colors

By default Wing runs with native look and feel for each OS. It is possible to override
this using Display Style preference. The options include using the native style, using
a selected style (for example Windows while running on OS X), or using a style where
foreground and background color can be selected.

Color Configuration

The colors used in the user interface are selected with the Color Palette preference.
This affects editor background color and the color of markers on text such as the
selection, debug run marker, caret line highlight, bookmarks, diff/merge annotations,
and other configurable colors. Palettes also define 20 additional colors that appear in
preferences menus that are used for selecting colors.

The defaults set by the color palette preference can be overridden on a value by value
basis in preferences. For example, the Text Selection Color preference is used to
change the text selection color to a value other than the one specified in the selected
color palette. Each such preference allows selection of a color from the current color
palette, or selection of any color from a color chooser dialog.

To set also the background color of areas other than the editor, first select a
Color Palette and then set the Display Style preference to Match Palette. The
foreground and background colors for the GUI will be set by the current color palette.

Add Color Palettes

Additional color palettes can be defined and stored in the palettes sub-directory of the
user settings directory. This directory must be created if it does not already exist.
Example palettes are included in your Wing IDE installation in resources/palettes.
After adding a palette in this way, Wing must be restarted before it is available for use.

2.2.2. User Interface Layout

When working in the default windowing policy, Wing's main user interface area
consists of two toolboxes (by default at bottom and right) and an area for source
editors and integrated help.

Customization

10

http://wingware.com/doc/install/user-settings-dir

Clicking on an already-active toolbox tab will cause Wing to minimize the entire panel
so that only the toolbox tabs are visible. Clicking again will return the toolbox to its
former size. The F1 and F2 keys toggle between these modes. The command
Maximize Editor Area in the Tools menu (Shift-F2) can also be used to quickly hide
both tool areas and toolbar.

In other windowing modes, the toolboxes and editor area are presented in separate
windows but share many of the configuration options described below.

Configuring the Toolbar

Wing's toolbar can be configured by altering the size and style of the toolbar icons in
the toolbar, and whether or not text is shown in addition to or instead of icons. This is
controlled with the Toolbar Icon Size and Toolbar Icon Style preferences.

Alternatively, the toolbar can be hidden completely with the Show Toolbar
preference.

Configuring the Editor Area

The options drop down menu in the top right of the editor area allows for splitting and
joining the editor into multiple independent panels. These can be arranged
horizontally, vertically, or any combination thereof. When multiple splits are shown, all
the open files within the window are available within each split, allowing work on any
combination of files and/or different parts of the same file.

The options drop down menu can also be used to change between tabbed editors and
editors that show a popup menu for selecting among files (the latter can be easier to
manage with large number of files) and to move editors out to a separate window or
among existing windows when multiple windows are open.

Configuring Toolboxes

Each of the toolboxes can be also be split or joined into any number of sub-panels
along the long axis of the toolbox by clicking on the options drop down icon in the tab
area of the toolbox (right-clicking also works). The number of tool box splits Wing
shows by default depends on your monitor size.

The size of each panel and the panel splits can also be altered by dragging on the
dividers between them.

All available tools are enumerated in the Tools menu, which will display the most
recently used tool of that type or will add one to your window at its default location, if
none is already present.

Customization

11

2.2.3. Altering Text Display

Wing tries to find display fonts appropriate for each system on which it runs, but many
users will want to customize the font style and size used in the editor and other user
interface areas. This can be done with the Source Code Font/Size and
Display Font/Size preferences.

2.3. Preferences
Wing has many preferences that control features of the editor, debugger, and other
tools.

To alter these, use the Preferences item in the Edit menu (or Wing IDE menu on OS
X). This organizes all available preferences by category and provides access to
documentation in tooltips that are displayed when mousing over the label area to the
left of each preference. Any non-default values that are selected through the
Preferences Dialog are stored in the user's preferences file, which is located in the
User Settings Directory.

Source Code Editor
Wing IDE's source code editor is designed to make it easier to adopt the IDE even if
you are used to other editors.

Note

Key things to know about the editor

• The editor has personalities that emulate other commonly used editors such
as Visual Studio, VI/Vim, Emacs, and Brief.

• Context-appropriate auto-completion, goto-definition, and code index
menus are available when working in Python code

• The editor supports a wide variety of file types for syntax colorization.

3.1. Syntax Colorization
The editor will attempt to colorize documents according to their MIME type, which is
determined by the file extension, or content. For example, any file ending in .py will be
colorized as a Python source code document. Any file whose MIME type cannot be
determined will display all text in black normal font by default.

Source Code Editor

12

http://wingware.com/doc/install/user-settings-dir

All the available colorization document types are listed in the File Properties dialog's
File Attributes tab. If you have a file that is not being recognized automatically, you
can use the File Type menu found there to alter the way the file is being displayed.
Your selections from this menu are stored in your project file, so changes made are
permanent in the context of that project.

3.2. Right-click Editor Menu
Right-clicking on the surface of the editor will display a context menu with commonly
used commands such as Copy, Paste, Goto Definition, and commenting and
indentation operations.

3.3. Navigating Source
The set of menus at the top of the editor can be used to navigate through your source
code. Each menu indicates the scope of the current cursor selection in the file and
may be used to navigate within the top-level scope, or within sub-scopes when they
exist.

When editor tabs are hidden by clicking on the options drop down in the top right of
the editor area, the left-most of these menus lists the currently open files by name.

You can use the Goto Definition menu item in the editor context menu to click on a
construct in your source and zoom to its point of definition. Alternatively, place the
cursor or selection on a symbol and use the Goto Selected Symbol Defn item in the
Source menu, or its keyboard equivalent. Control-Click (and Command-Click on OS
X) also jumps to the point of definition.

When moving around source, the history buttons in the top left of the editor area can
be used to move forward and backward through visited files and locations within a file
in a manner similar to the forward and back buttons in a web browser.

Moving to other files can also be done with the Window menu, which lists all open
files.

3.4. File status and read-only files
The editor tabs, or editor selection menu when the tabs are hidden, indicate the status
of the file by appending * when the file has been edited or (r/o) when the file is
read-only. This information is mirrored for the current file in the status area at the
bottom left of each editor window. Edited status is also shown in the Window menu by
appending * to the file names found there.

Files that are read-only on disk are initially opened within a read-only editor. Use the
file's context menu (right-click) to toggle between read-only and writable state. This

Source Code Editor

13

http://wingware.com/doc/proj/per-file-properties

alters both the editability of the editor and the writability of the disk file so may fail if
you do not have the necessary access permissions to make this change.

3.5. Transient, Sticky, and Locked Editors
Wing can open files in several modes that control how and when files are closed:

Transient Mode -- Files opened when debugging or navigating to point of definition
are opened in transient mode and will be automatically closed when hidden.

Sticky Mode -- Files opened from the File menu or from the keyboard file selector will
be opened in sticky mode, and are kept open until they are explicitly closed.

A file can be switched between these modes by clicking on the stick pin icon in the
upper right of the editor area.

Right-click on the stick pin icon to navigate to files that were recently visited in the
associated editor or editor split. Blue items in the menu were visited in transient state
and black items were sticky. Note that this differs from the Recent area in the File
menu, which lists only sticky file visits and includes visits for all editors and editor
splits.

Transient files that are edited are also automatically converted to sticky mode.

3.6. Indentation
Since indentation is syntactically significant in Python, Wing provides a range of
features for inspecting and managing indentation in source code.

3.6.1. How Indent Style is Determined

When an existing file is opened, it is scanned to determine what type of indentation is
used in that file. Wing then matches new indentation as the file is edited to the form
already found in the file. If mixed forms of indentation are found, the most common
form is used. If no indentation is found, space-only indents are inserted using the size
set in preferences.

3.6.2. Indentation Preferences

The following preferences affect how the indentation features behave:

1. The Default Indent Size preference defines the default size of each level of
indent, in spaces. This is used in new empty files only. Wing may override this
value in files that contain only tabs in indentation, in order to make it a multiple of
the configured tab size.

Source Code Editor

14

2. The Show Indent Guides preference controls whether or not to show indentation
guides as light vertical lines. This value can be overridden on a file-by-file basis
from Editor tab in File Properties.

3.6.3. Auto-Indent

The IDE ships with auto-indent turned on. This causes leading white space to be
added to each newly created line, as return or enter are pressed. Enough white space
is inserted to match the indentation level of the previous line, possibly adding or
removing a level of indentation if this is indicated by context in the source (such as if,
while, or return).

Note that if preference Auto-indent is turned off, auto-indent does not occur until the
tab key is pressed.

In Python code, Wing also auto-indents after typing a colon after else, elif, except,
and finally. Indentation will go to the closest matching if or try statement. I f there are
multiple possible matching statements, the colon key can be pressed repeatedly to
toggle through the possible positions for the line. Similarly, when Smart Tab is
selected as the Tab Key Action, then pressing the Tab key repeatedly will toggle the
line through the possible indent positions. This can also be accomplished with the
Indent to Match toolbar and menu items (regardless of selected tab key action).

When pasting multiple lines into Python code and the caret is in the indent region or
on a blank line, Wing will auto-indent pasted text as follows: (1) If the caret is in
column zero, the text is indented to match the context, (2) If the caret is within the
indent region but not in column zero, the text is indented to that position. If the
auto-indent is incorrect, a single Undo will return the pasted text to its original
indentation level, or the text can be selected and adjusted with the indentation toolbar
or menu items or key equivalents.

3.6.4. The Tab Key

By default, the action of the tab key depends on the selected Keyboard Personality,
file type, and position within the file as described under Default for Personality
below.

To insert a real tab character regardless of the indentation mode or the position of the
cursor on a line, type Ctrl-Tab or Ctrl-T.

The behavior of the tab key can be altered using the Tab Key Action preference,
which provides the following options:

Default for Personality

Source Code Editor

15

http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/edit/the-tab-key

This selects from the other tab key actions below according to the chosen keyboard
personality, current file type, and in some cases the position of the caret within the file.
In all non-Python files, the default is Move to Next Tab Stop. In Python files, the
defaults are as follows by keyboard personality:

• Normal: Smart Tab
• VI/VIM: Move to Next Tab Stop
• Emacs: Indent to Match
• Brief: Smart Tab
• Visual Studio: Move to Next Tab Stop
• OS X: Smart Tab

Indent to Match

This indents the current line or selected lines to position them at the computed indent
level for their context in the file.

Move to Next Tab Stop

This enters indentation characters matching the current file's style of indentation so
that the caret reaches the next tab stop.

Indent Region

This enters indentation characters matching the current file's style of indentation to
increase the indentation of the current line or selected lines by one level.

Insert Tab Character

This inserts a Tab character (chr(9)) into the file.

Smart Tab

This option is available for Python files only. It implements the following behavior for
the tab key:

Source Code Editor

16

1. When the caret is within a line or there is a non-empty selection, this performs
Indent to Match. When the line or lines are already at the matching position,
indentation is toggled between likely positions as follows:

a. If a comment precedes the current line or selection, then indentation will
match the position of the prior non-comment code line (if any).

b. If multiple nested blocks match an 'else', 'elif', 'except', or 'finally', then
indentation will match the position of the enclosing blocks (traversing each in
outward order).

b. In other cases, indentation is reduced by one level.

2. When the caret is at the end of a non-empty line and there is no selection, one
indent level is inserted. The Smart Tab End of Line Indents preference can be
used to alter the type of indentation used or to disable this aspect of the Smart
Tab feature.

3.6.5. Changing Block Indentation

Wing provides Indent and Outdent commands in the Indentation portion of the
Source menu, which increase or decrease the level of indentation for selected blocks
of text. All lines that are included in the current text selection are moved, even if the
entire line isn't selected.

Note

Indenting to Match

The command Indent Lines to Match (also in the Indentation sub-menu) will
indent or outdent the current line or selected lines to the level as a unit so that
the first line is positioned as it would have been positioned by Wing's
auto-indentation facility. This is very useful when moving around blocks of code.

3.7. Brace Matching
Wing will highlight matching braces in green when the cursor is adjacent to a brace.
Mismatched braces are highlighted in red.

You can cause Wing to select the entire contents of the innermost brace pair from the
current cursor position with the Match Braces item in the Source menu.

Source Code Editor

17

Parenthesis, square brackets, and curly braces are matched in all files. Angle
brackets (< and >) are matched also in HTML and XML files.

3.8. Support for files in .zip or .egg files
Source and other text files stored in .zip or .egg files may be loaded into the editor as
readonly files. Wing is unable to write changes to a file within a .zip or .egg file or
otherwise write to or create a .zip or .egg file.

When stepping through code, using goto definition, or using other methods to goto a
line in a file, a file within a .zip or .egg file will be opened automatically. To open a file
through the open file dialog, specify the name of the .zip or .egg file and add a /
followed by the name of the file to open.

3.9. Notes on Copy/Paste
There are a number of ways to cut, copy, and paste text in the editor:

• Use the Edit menu items. This stores the copy/cut text in the system-wide
clipboard and can be pasted into or copied from other applications.

• Use key equivalents as defined in the Edit menu.
• Right-click on the editor surface and use the items in the popup menu that

appears.
• Select a range of text and drag it using the drag and drop feature. This will move

the text from its old location to the new location, either within or between editors.
• On Linux, select text anywhere on the display and then click with the middle

mouse button to insert it at the point of click.
• On Windows and Mac OS X, click with the middle mouse button to insert the

current emacs private clipboard (if in emacs mode and the buffer is non-empty) or
the contents of the system-wide clipboard (in all other cases). This behavior may
be disabled via the Middle Mouse Paste preference

• In emacs mode, ctrl-k (kill-line) will cut one line at a time into the private emacs
clipboard. This is kept separate from the system-wide clipboard and is pasted
using ctrl-y (yank-line). On Windows and Mac OS X, ctrl-y will paste the contents
of the system-wide clipboard only if the emacs clipboard is empty.

• In VI mode, named text registers are supported.

It is important to note which actions use the system-wide clipboard, which use the
emacs private clipboard or VI registers, and which use the X windows selection (X
Windows only). Otherwise, these commands are interchangeable in their effects.

Source Code Editor

18

Smart Copy

Wing can be configured to copy or cut the whole current line when there is no
selection on the editor. This is done with On Empty Selection in the
Editor > Clipboard preference group. The default is to use the whole line on copy but
not cut.

Search/Replace
Wing provides a number of tools for search and replace in your source code. Which
you use depends on the complexity of your search or replace task and what style of
searching you are most familiar with.

4.1. Toolbar Quick Search
One way to do simple searches is to enter text in the search area of the toolbar. This
scrolls as you type to the next match found after the current cursor position. Pressing
Enter will search for each subsequent match, wrapping the search when the end of
the file is reached.

Text matching during toolbar quick search is case-insensitive unless you enter a
capital letter as part of your search string.

If focus is off the toolbar search area and it already contains a search string, clicking
on it will immediately start searching in the current source editor for the next match. If
you wish to search for another string instead, delete the text and type the desired
search string. As you delete, the match position in the editor will proceed backward
until it reaches your original search start position, so that after typing your new search
string you will be presented with the first match after the original source editor cursor
position.

4.2. Search Tool
The dockable Search tool can be used for more advanced search and replace tasks
within the current editor. It provides the ability to customize case sensitivity and
whole/part word matching, search in selection, and perform wildcard or regex search
and replace.

The Replace field may be hidden and can be shown from the Options menu in the
bottom right of the tool.

To the right of the Search and Replace fields, Wing makes available a popup that
contains a history of previously used strings, options for inserting special characters,
and an option for expanding the size of the entry area.

Search/Replace

19

The following search options can be selected from the tool:

• Case Sensitive -- Check this option to show only exact matches of upper and
lower case letters in the search string.

• Whole Words -- Check this option to require that matches are surrounded by
white space (spaces, tabs, or line ends) or punctuation other than _
(underscores).

• In Selection -- Search for matches only within the current selection on the editor.

The following additional options are available from the Options popup menu:

• Show Replace -- Whether or not the Replace field is visible in the tool.
• Text Search -- Select this to do a regular text search without wildcard or regex.
• Wildcard Search -- Select this to allow use of special characters for wildcarding

in the search string (see Wildcard Search Syntax for details).
• Regex Search -- Select this to use regular expression style searching. This is a

more powerful variant than wildcard search that allows for more complex
specification of search matches and replacement values. For information on the
syntax allowed for the search and replace strings, see Python's Regular
Expression Syntax documentation. In this mode, the replace string can reference
regex match groups with \1, \2, etc, as in the Python re.sub() call.

• Wrap Search -- Uncheck this to avoid wrapping around when the search reaches
the top or bottom of a file.

• Incremental -- Check this to immediately start or restarted searching as you type
or alter search options. When unchecked, use the forward/backward search
buttons to initiate searching.

• Find After Replace -- Select this to automatically find the next search match after
each Replace operation.

4.3. Wildcard Search Syntax
For wild card searches in the Search tools, the following syntax is used:

* can be used to match any sequence of characters except for line endings. For
example, the search string my*value would match anything within a single line of text
starting with my and ending with value. Note that * is "greedy" in that
myinstancevalue = myothervalue would match as a whole rather than as two
matches. To avoid this, use Regex Search instead with .*? instead of *.

? can be used to match any single character except for line endings. For example,
my???value would match any string starting with my followed by three characters,
and ending with value.

Search/Replace

20

http://wingware.com/doc/edit/search-wildcard
http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html
http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html

[and] can be used to indicate sets of match characters. For example [abcd] matches
any one of a, b, c, or d. Also, [a-zA-Z] matches any letter in the range from a to z
(inclusive), either lower case or uppercase. Note that case specifications in character
ranges will be ignored unless the Case Sensitive option is turned on.

Interactive Python Shell
Wing provides an integrated Python Shell for execution of commands and
experimental evaluation of expressions. The version of Python used in the Python
Shell, and the environment it runs with, is configured using Configure Python in the
Edit menu.

This shell runs a separate Python process that is independent of the IDE and
functions without regard to the state of any running debug process.

Convenient ways to run parts of your source code in the shell include:

Copy/Paste part of a file -- Wing will automatically adjust leading indentation so the
code can be executed in the shell.

Drag and Drop part of a file -- This works like Copy/Paste.

Evaluate File in Python Shell -- This command in the Source menu will evaluate the
top level of the current file in the shell.

Evaluate Selection in Python Shell -- The command in the Source menu and
editor's context menu (right-click) will evaluate the current selection in the shell.

Options menu This menu in the Python Shell tool contains items for evaluating the
current file or selection

In the Python Shell, the Up and Down arrow keys will traverse the history of the code
you have entered and the return key will either execute the code if it is complete or
prompt for another line if it is not. Ctrl-Up and Ctrl-Down will move the cursor up and
down and Ctrl-Return will insert a new line character at the cursor position.

To restart the Python Shell, select Restart Shell from the Options menu in the top
right of the tool. This will terminate the external Python process and restart it, clearing
and resetting the state of the shell.

To save the contents of the shell, use Save a Copy in the Options menu or right-click
context menu. The right-click context menu also provides items for copying and
pasting text in the shell.

To preload some code into the Python Shell when it is started, you can set the
PYTHONSTARTUP environment variable, as supported by the Python Shell outside
of Wing IDE.

Interactive Python Shell

21

5.1. Python Shell Options
The Options menu in the Python Shell contains some settings that control how the
Python Shell works:

• Wrap Lines causes the shell to wrap long output lines in the display
• Filter history by entered prefix controls whether the history will be filtered by the

string between the prompt an the cursor. If history is filtered and a is entered at
the prompt, the up arrow will find the most recent history item starting with a

• Evaluate Whole Lines causes Wing to round up the selection to the nearest line
when evaluating selections, making it easier to select the desired range

• Auto-restart when Evaluate File causes Wing to automatically restart the shell
before evaluating a file, so that each evaluation is made within a clean new
environment.

Debugger
Wing's debugger provides a powerful toolset for rapidly locating and fixing bugs in
single-threaded or multi-threaded Python code.

6.1. Setting Breakpoints
Breakpoints can be set on source code by opening the source file and clicking on the
breakpoint margin to the left of a line of source code. Right-clicking on the breakpoint
margin will display a context menu with additional breakpoint operations and options.
Alternatively, the Debug menu or the toolbar's breakpoint icons can be used to set or
clear breakpoints at the current line of source (where the insertion cursor or selection
is located).

6.2. Starting Debug
There are several ways in which to start a debug session from within Wing:

• Choose Start / Continue from the Debug menu or push the Debug icon in the
toolbar. This will run the current file open in the editor. Execution stops at the first
breakpoint or exception, or upon program completion.

• Choose Step Into from the Debug menu or push the Step Into icon in the
toolbar. This will run the main debug file if one has been defined, or otherwise the
file open in the frontmost editor window. Execution stops at the first line of code.

• Use one of the key bindings given in the Debug menu.

Debugger

22

Once a debug process has been started, the status indicator in the lower left of the
window should change from white or grey to another color, as described in Debugger
Status.

6.3. Debugger Status
The debugger status indicator in the lower left of editor Windows is used to display the
state of the debugger. Mousing over the bug icon shows expanded debugger status
information in a tool tip. The color of the bug icon summarizes the status of the debug
process, as follows:

• Gray -- There is no debug process.
• Green -- The debug process is running.
• Yellow -- The debug process is paused or stopped at a breakpoint.
• Red -- The debug process is stopped at an exception.

The current debugger status is also appended to the Debugger status group in the
IDE's Messages tool.

6.4. Flow Control
Once the debugger is running, the following commands are available for controlling
further execution of the debug program from Wing. These are accessible from the tool
bar and the Debug menu:

• At any time, a freely running debug program can be paused with the Pause item
in the Debug menu or with the pause tool bar button. This will stop at the current
point of execution of the debug program.

• At any time during a debug session, the Stop Debugging menu item or toolbar
item can be used to force termination of the debug program. This option is
disabled by default if the current process was launched outside of Wing. It may be
enabled for all local processes by using the Kill Externally Launched
preference.

When stopped on a given line of code, execution can be controlled as follows from the
Debug menu:

Step Over will step over a single instruction in Python. This may not leave the current
line if it contains something like a list comprehension or single-line for loop.

Step Into will attempt to step into the next executed function on the current line of
code. If there is no function or method to step into, this command acts like Step Over.

Debugger

23

http://wingware.com/doc/debug/status
http://wingware.com/doc/debug/status

Step Out will complete execution of the current function or method and stop on the
first instruction encountered after returning from the current function or method.

Continue will continue execution until the next breakpoint, exception, or program
termination

6.5. Viewing the Stack
Whenever the debug program is paused at a breakpoint or during manual stepping,
the current stack is displayed in the Call Stack tool. This shows all program stack
frames encountered between invocation of the program and the current run position.
Outermost stack frames are higher up on the list.

When the debugger steps or stops at a breakpoint or exception, it selects the
innermost stack frame by default. In order to visit other stack frames further up or
down the stack, select them in the Call Stack tool. You may also change stack frames
using the Up Stack and Down Stack items in the Debug menu, the up/down tool bar
icons, the stack selector popup menus the other debugging tools.

When you change stack frames, all the tools in Wing that reference the current stack
frame will be updated, and the current line of code at that stack frame is presented in
an editor window.

To change the type of stack display, right-click on the Call Stack tool and select from
the options for the display and positioning of the code line excerpted from the debug
process.

When an exception has occurred, a backtrace is also captured by the Exceptions
notification tool, where it can be accessed even after the debug process has exited.

6.6. Viewing Debug Data
Wing IDE allows you to inspect locals and globals using the Stack Data tool. This
area displays values for the currently selected stack frame.

Note

Values Fetched on Demand

The variable data displayed by Wing is fetched from the debug server on the fly
as you navigate. Because of this, you may experience a brief delay when a
change in an expansion or stack frame results in a large data transfer.

Debugger

24

For the same reason, leaving large amounts of debug data visible on screen
may slow down stepping through code.

6.6.1. Stack Data View

The Stack Data debugger tool contains a popup menu for selecting thread (in
multi-threaded processes) and accessing the current debug stack, a tree view area for
browsing variable data in locals and globals, and a textual view area for inspecting
large data values that are truncated on the tree display.

Simple values, such as strings and numbers, and values with a short string
representation, will be displayed in the value column of the tree view area.

Strings are always contained in "" (double quotes). Any value outside of quotes is a
number or internally defined constant such as None or Ellipsis.

Integers can be displayed as decimal, hexadecimal, or octal, as controlled by the
Integer Display Mode preference.

Complex values, such as instances, lists, and dictionaries, will be presented with an
angle-bracketed type and memory address (for example, <dict 0x80ce388>) and can
be expanded by clicking on the expansion indicator in the Variable column. The
memory address uniquely identifies the construct. If you see the same address in two
places, you are looking at two object references to the same instance.

If a complex value is short enough to be displayed in its entirety, the angle-bracketed
form is replaced with its value, for example {'a': 'b'} for a small dictionary. These short
complex values can still be expanded in the normal way.

Upon expansion of complex data, the position or name of each sub-entry will be
displayed in the Variable column, and the value of each entry (possibly also complex
values) will be displayed in the Value column. Nested complex values can be
expanded indefinitely, even if this results in the traversal of cycles of object
references.

Once you expand an entry, the debugger will continue to present that entry expanded,
even after you step further or restart the debug session. Expansion state is saved for
the duration of your Wing IDE session.

When the debugger encounters a long string, it will be truncated in the Value column.
In this case, the full value of the string can be viewed in the textual display area at the
bottom of the Stack Data tool, which is accessed by right-clicking on a value and

Debugger

25

selecting Show Detail. The contents of the detail area is updated when other items in
the Stack Data tool are selected.

Note

Opaque Data

Some data types, such as those defined only within C/C++ code, or those
containing certain Python language internals, cannot be transferred over the
network. These are denoted with Value entries in the form
<opaque 0x80ce784> and cannot be expanded further.

6.6.1.1. Popup Menu Options

Right-clicking on the surface of the Stack Data view displays a popup menu with
options for navigating data structures:

• Show/Hide Detail -- Used to quickly show and hide the split where Wing shows
expanded copies of values that are truncated on the main debug data view (click
on items to show their expanded form).

• Expand More -- When a complex data value is selected, this menu item will
expand one additional level in the complex value. Since this expands a potentially
large number of values, you may experience a delay before the operation
completes.

• Collapse More -- When a complex data value is selected, this menu item will
collapse its display by one additional level.

• Force Reload -- This forces Wing IDE to reload the displayed value from the
debug process. This is useful in cases where Wing is showing an evaluation error
or when the debug program contains instances that implement __repr__ or
similar special methods in a way that causes the value to change when subjected
to repeated evaluation.

6.6.2. Problems Handling Values

The Wing debugger tries to handle debug data as gently as possible to avoid entering
into lengthy computations or triggering errors in the debug process while it is
packaging debug data for transfer. Even so, not all debug data can be shown on the
display. This section describes each of the reasons why this may happen:

Debugger

26

Wing may time out handling a value -- Large data values may hang up the debug
server process during packaging. Wing tries to avoid this by carefully probing an
object's size before packing it up. In some cases, this does not work and Wing will
wait for the data for the duration set by the Network Timeout preference and then will
display the variable value as <network timeout during evaluate>.

Wing may encounter values too large to handle -- Wing will not package and
transfer large sequences, arrays or strings that exceed the size limits set by
Huge List Threshold and Huge String Threshold preferences. On the debugger
display, oversized sequences and arrays are annotated as huge and <truncated> is
prepended to large truncated strings.

To avoid this, increase the value of the threshold preferences, but be prepared for
longer data transfer times. Note that setting these values too high will cause the
debugger to time out if the Network Timeout value isn't also increased.

Wing may encounter errors during data handling -- Because Wing makes
assignments and comparisons during packaging of debug data, and because it
converts debug data into string form, it may execute special methods such as
__cmp__ and __str__ in your code. If this code has bugs in it, the debugger may
reveal those bugs at times when you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++
extension module code is invoked. In this case, the debug session is ended.

More common, but still rare, are cases where Wing encounters an unexpected Python
exception while handling a debug data value. When this happens, Wing displays the
value as <error handling value>.

These errors are not reported as normal program errors in the Exceptions tool.
However, extra output that may contain the exception being raised can be obtained by
setting the Debug Internals Log File preference.

Stored Value Errors

Wing remembers errors it encounters on debug values and stores these in the project
file. These values will not be refetched during subsequent debugging, even if Wing is
quit and restarted.

To override this behavior for an individual value, use the Force Reload item in the
right-click context menu on a data value.

To clear the list of all errors previously encountered so that all values are reloaded,
use the Clear Stored Value Errors item in the Debug menu. This operates only on
the list of errors known for the current debug file, if a debug session is active, or for
the main debug file, if any, when no debug process is running.

Debugger

27

6.7. Debug Process I/O
While running under the Wing debugger, any output from print or any writes to stdout
or stderr will be seen in the Debug I/O tool. This is also where you enter keyboard
input, if your debug program requests any with input() or raw_input() or by reading
from stdin.

6.8. Debugging Multi-threaded Code
Wing's debugger can debug multi-threaded code, as well as single-threaded code. By
default, Wing will debug all threads and will stop all threads if a single thread stops. If
multiple threads are present in the debug process, the Stack Data tool (and in Wing
Pro the Debug Probe and Watch tools) will add a thread selector popup to the stack
selector.

Even though Wing tries to stop all threads, some may continue running if they do not
enter any Python code. In that case, the thread selector will list the thread as running.
It also indicates which thread was the first one to stop.

When moving among threads in a multi-threaded program, the Show Position icon
shown in the toolbar during debugging (between the up/down frame icons) is a
convenient way to return to the original thread and stopping position.

Whenever debugging threaded code, please note that the debugger's actions may
alter the order and duration that threads are run. This is a result of the small added
overhead, which may influence timing, and the fact that the debugger communicates
with the IDE through a TCP/IP connection.

Selecting Threads to Debug

Currently, the only way to avoid stopping all threads in the debugger is to launch your
debug process from outside Wing, import wingdbstub, and use the debugger API's
SetDebugThreads() call to specify which threads to debug. All other threads will be
entirely ignored. This is documented in Debugging Externally Launched Code and the
API is described in Debugger API

An example of this can be seen in the file DebugHttpServer.py that ships with Wing's
support for Zope and Plone. To see this, unpack the WingDBG archive found inside
the zope directory in your Wing installation.

Note, however, that specifying a subset of threads to debug may cause problems in
some cases. For example, if a non-debugged thread starts running and does not
return control to any other threads, then Wing's debugger will cease to respond to the
IDE and the connection to the debug process will eventually be closed. This is

Debugger

28

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugger-api

unavoidable as there is no way to preemptively force the debug-enabled threads to
run again.

6.9. OS X Debugging Notes

System-Provided Python

The copy of Python in /Library/Python on OS X does not include source files for the
standard libraries, so Wing's editor will not offer autocompletion values for those
modules. To work around this, use Python from within
/Library/Frameworks/Python.frameworks instead or copy of Python installed from
the standard source distribution.

MacPorts Python

At least some versions of the MacPorts packaging of Python are known not to work
with Wing's debugger because it contains an _md5 module that won't load. To work
around this, use a different distribution of Python instead.

Debugging 32-bit Python on a 64-bit System

On 64-bit OS X systems, you can set up a shell script with the following contents and
set it as the Python Executable in Project Properties, in order to facilitate debugging
Python in 32-bit mode:

#!/bin/bash
arch -i386 python "$@"

This should only be necessary if your code needs 32-bit libraries. Wing's debugger
works in either 64-bit or 32-bit mode.

Source Code Analysis
Wing's auto-completer, source assistant, source index menu, goto-definition
capability, find uses, refactoring, and other features all rely on a central engine that
reads and analyzes your source code in the background as you add files to your
project or alter your code in the source code editor. This engine can also load and
inspect extension modules used by your code, can make use of live runtime state
when available in a debug process or in the integrated Python Shell, and can read
user-provided interface description files.

Source Code Analysis

29

7.1. How Analysis Works
In analysing your source, Wing will use the Python interpreter and PYTHONPATH that
you have specified using Configure Python in the Edit menu. Whenever any of these
values changes, Wing will re-analyze some or all of your source code.

When Wing tries to find analysis information for a particular module or file, it takes the
following steps:

• The path and same directory as the referencing module are searched for an
importable module

• If the module is Python code, Wing statically analyses the code to extract
information from it

• If the module is an extension module, Wing looks for a *.pi interface description
file as described later in this section

• If the module cannot be found, Wing tries to import it in a separate process space
in order to analyze its contents

• If a debug process is active, Wing tries to read relevant type information from the
live runtime state associated with the source code

7.2. Static Analysis Limitations
The following are known limitations affecting features based on static source analysis:

• Argument number, name, and type is not determined for functions and methods in
extension modules.

• Analysis sometimes fails to identify the type of a construct because Python code
doesn't always provide clues to determine the data type.

• Types of elements in lists, tuples, and dictionaries are not identified.
• Analysis information may be out of date if you edit a file externally with another

editor and don't reload it in Wing. See section Auto-reloading Changed Files for
reload options.

• From time to time, as Python changes, some newer Python language constructs
and possible type inferencing cases are not supported.

A good way to work around these limitations, when they arise, is to place a breakpoint
in the code where you are working, run to it, and then auto-completion and other
information presented by the IDE will be based on the actual runtime state rather than
static analysis.

See Helping Wing Analyze Code for more information.

Source Code Analysis

30

http://wingware.com/doc/edit/auto-reloading-changed-files
http://wingware.com/doc/edit/helping-wing-analyze-code

7.3. Helping Wing Analyze Code
There are a number of ways of assistant Wing's static source analyzer in determining
the type of values in Python code.

Using Live Runtime State

When a debug process is active, or when working in the Python Shell, Wing extracts
relevant type information from the live runtime state associated with your Python code.
Since this yields complete and correct type information even for code that Wing's
static analysis engine cannot understand, it is often useful to run to a breakpoint
before designing new code that is intended to work in that context. In the editor, the
cog icon in the auto-completer indicates that type information was found in the live
runtime state. In Wing IDE Professional, the Debug Probe can be used to
immediately try out new code in the runtime environment for which it is being
designed.

Using isinstance() to Assist Analysis

One way to inform the code analysis facility of the type of a variable is to add an
isinstance call in your code. For example isinstance(obj, CMyClass) or
assert isinstance(obj, CMyClass) when runtime type checking is desired. The code
analyzer will pick up on these and present more complete information for the asserted
values.

In cases where doing this introduces a circular import, you can use a conditional to
allow Wing's static analyser to process the code without causing problems when it is
executed:

if 0:
 import othermodule
 assert isinstance(myvariable, othermodule.COtherClass)

In most code, a few isinstance calls go a long way to making code faster and easier
to edit and navigate.

Using *.pi files to Assist Analysis

Wing's source analyser can only read Python code and does not contain support for
understanding C/C++ extension module code other than by attempting to import the
extension module and introspecting its contents (which yields only a limited amount of
information and cannot determine argument number, name, or types). Also, since
Python is a dynamic language, it is possible to craft code that Wing's static analysis
engine cannot understand.

Source Code Analysis

31

For both of these cases, it is possible to create a *.pi (Python interface) file that
describes the contents of a module. This file is simply a Python skeleton with the
appropriate structure and call signature to match the functions, attributes, classes, and
methods defined in a module. Wing IDE will read this file and merge its contents with
any information it can obtain through static analysis or by loading an extension
module. In somes cases, as for Python bindings for GUI and other toolkits, these *.pi
files can be auto-generated from interface description files.

For a module imported as mymodule, the interface file is called mymodule.pi. Wing
will search for *.pi files first in the same directory as it finds the Python module (or the
extension module source code if it has not yet been compiled and the source code's
directory is on your configured Python Path). If not found, Wing will look in the
directory path set with the Interfaces Path preference. Next, Wing will look in the
resources/builtin-pi-files directory within your Wing IDE installation. Finally, Wing
will look in resources/packages-pi-files, which is used to ship some *.pi files for
commonly used third party packages.

When searching on the interfaces path or in the resources directories, the top level of
the directory is checked first for a matching *.pi file. Then, Wing tries looking in a
sub-directory #.# named according to the major and minor version of Python being
used with your source base, and subsequently in each lower major/minor version back
to 2.0.

For example, if c:\share\pi\pi-files is on the interfaces path and Python 2.7 is being
used, Wing will check first in c:\share\pi\pi-files, then in c:\share\pi\pi-files\2.7. then
in c:\share\pi\pi-files\2.6, and so forth.

Example *.pi files used by Wing internally to produce autocompletion information for
builtins can be seen in the directory resources/builtin-pi-files inside your Wing IDE
installation. This also illustrates the above-described version number fallback
mechanism.

In cases where Wing cannot find a *.pi at all, it will attempt to load the module by
name (in a separate process space) so that it can introspect its contents. The results
of this operation are stored in pi-cache within the User Settings Directory and used
subsequently. This file is regenerated only if the *.pyd or *.so for the loaded module
changes.

7.4. Analysis Disk Cache
The source code analyzer writes information about files it has recently examined into
the Cache Directory that is listed in Wing's About box, which is accessed from the
Help menu.

Source Code Analysis

32

http://wingware.com/doc/install/user-settings-dir

Cache size may be controlled with the Max Cache Size preference However, Wing
does not perform well if the space available for the cache is smaller than the space
needed for a single project's source analysis information. If you see excessive
sluggishness, either increase the size of the cache or disable it entirely by setting its
size to 0.

If the same cache will be used by more than one computer, make sure the clocks of
the two computers are synchronized. The caching mechanism uses time stamps, and
may become confused if this is not done.

The analysis cache may be removed in its entirety. Wing IDE will reanalyze your code
and recreate the cache as necessary.

Trouble-shooting Guide
This chapter describes what to do if you are having trouble installing or using Wing
IDE.

Note

We welcome feedback and bug reports, both of which can be submitted directly
from Wing IDE using the Submit Feedback and Submit Bug Report items in
the Help menu, or by emailing us at support at wingware.com.

8.1. Trouble-shooting Failure to Start
If you are having trouble getting Wing to start at all, read through this section for
information on diagnosing the problem.

To rule out problems with a project file or preferences, try renaming your User
Settings Directory and restart Wing. If this works, you can copy over files from the
renamed directory one at a time to isolate the problem -- or email support at wingware
dot com for help.

On Windows, the user's temporary directory sometimes becomes full, which prevents
Wing from starting. Check whether the directory contains more than 65,000 files.

On Linux, OS X, or other Posix systems, in some cases when the ~/.cache
directory or the cache directory set by the $XDG_CACHE_DIR is located on an NFS
or other remote file server, Wing can't obtain a lock on a database file. To use slower,
dotfile locking set the Use sqlite dotfile locking preference to enabled or run Wing

Trouble-shooting Guide

33

mailto:support@wingware.com
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

with the --use-sqlite-dotfile-locking command line option. Note that all Wing
processes, regardless of the system they're running on, that use the same cache
directory need to either use or not use dotfile locking.

Under a Windows terminal server, Wing may not be able to set up the environment
variables it uses internally and will not start up. In this case, you can get Wing to start
with the following commands:

set PYTHONOPTIMIZE=1
set PYTHONHOME=D:\Program Files\WingIDE\bin\PyCore
wing.exe

Alter PYTHONHOME according to the location at which you've installed Wing IDE.

On Linux with System Qt, Wing may fail to start if there is an incompatibility with the
version of Qt that you have on your system. This should only occur if you are using
the --system-qt command line option or have previoulsy changed the Use System Qt
preference from its default value. To solve this, start Wing with the --private-qt
command line option and restore the Use System Qt preference to
Use Wing's Private Qt.

Constant Guard from Comcast can prevent Wing IDE from starting without showing
any dialog or message that it is doing so.

8.2. Speeding up Wing
Wing should present a responsive, snappy user interface even on relatively slow
hardware. In some cases, Wing may appear sluggish:

With New Projects, the first time you set up a project file, Wing analyzes all source
files for the source code browser and auto-completion facilities. During this time, the
browser's class-oriented views will display only the source constructs from files of
which analysis information has already been obtained. The user interface may also
appear to be sluggish and Wing will consume substantial amounts of CPU time.

To avoid this in subsequent sessions, Wing stores its source analysis information to
disk in a cache within your User Settings Directory.

On a multi-core virtual machine where Wing runs slowly, you may be able to
improve performance by setting the processor affinity for Wing. This is done with
schedtool -a 0x1 -e wing-1015.0 on Linux (the schedtool package needs to be
installed if not already present) and with START
/AFFINITY 01 "Wing IDE" "C:\Program Files\Wing IDE 5.0\bin\wing.exe" on
Windows. Although Wing runs on only one core, this technique has been reported to
improve performance.

Trouble-shooting Guide

34

http://wingware.com/doc/install/user-settings-dir

On OS X Mavericks, certain graphics drivers have a bug that substantially slows
down Wing IDE because the OS is incorrectly detecting Wing IDE as inactive. Turning
off App Nap has no effect on this, although the bug may be associated with that
feature. The work-around is to put the computer to sleep briefly while Wing IDE is
already running. Wing should then remain responsive until it is quit.

8.3. Trouble-shooting Other Known Problems
Here are some other known problems that can affect some of Wing IDE's functionality:

Windows File Names with Spaces

When using Windows File Types or Open With to cause Python files to be opened
with Wing, some versions of Windows set up the wrong command line for opening the
file. You can fix this using regedt32.exe, regedit.exe, or similar tool to edit the
following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Applications\wing.exe\shell\open\command

The problem is that the association stored there is missing quotes around the %1
argument. It should instead read as follows:

"C:\Program Files\Wing IDE\bin\wing.exe" "%1" %*

Copy/Paste Fails on Windows

Webroot Secure Anywhere v8.0.4.66 blocks Wing IDE and Python's access to the
clipboard by default so Copy/Paste will not work. The solution is to remove Wing IDE
and Python from the list of applications that Webroot is denying access to the
clipboard.

Failure to Find Python

Wing scans for Python at startup and may sometimes report that it could not be found
even if it is on your machine.

If this happens all the time, point Python Executable in Configure Python (accessed
from the Edit menu) to your Python. Wing remembers this and the message should
go away.

If this happens only intermittently, it may be caused by high load on your machine. Try
restarting Wing after load goes down. In some cases anti-virus software causes this
during periods of intensive scanning.

Failure to Detect HTTP Proxy and Connect to wingware.com

Trouble-shooting Guide

35

Wing will try to open an http connection to wingware.com when you activate a
license, check for product updates, or submit feedback or a bug report. If you are
running in an environment with an http proxy, Wing will try to auto-detect your proxy
settings. If this fails you will need to configure your proxy manually using Wing's
HTTP Proxy Server preference. To determine the correct settings to use, ask your
network administrator or see how to determine proxy settings.

License Information
Wing IDE is a commercial product that is based on a number of open source
technologies. Although the product source code is available for Wing IDE Professional
users (with signed non-disclosure agreement) the product is not itself open source.

The following sections describe the licensing of the product as a whole (the End User
License Agreement) and provide required legal statements for the incorporated open
source components.

9.1. Wing IDE Software License
This End User License Agreement (EULA) is a CONTRACT between you (either an
individual or a single entity) and Wingware, which covers your use of "Wing IDE 101"
and related software components. All such software is referred to herein as the
"Software Product." If you do not agree to the terms of this EULA, then do not install
or use the Software Product or the Software Product License. By explicitly accepting
this EULA you are acknowledging and agreeing to be bound by the following terms:

1. NON-COMMERCIAL USE ONLY

This Software Product is for Non-Commercial Use only and may be used only by the
following types of users: (a) publicly funded charities, (b) universities, colleges, and
other educational institutions (including, but not limited to elementary schools, middle
schools, high schools, and community colleges), (c) students at any of these types of
educational institutions, (d) individuals or entities who are under contract by the
above-stated organizations and using the Software Product exclusively for such
charitable or educational clients, and (d) other individual users who use the Software
Product for unpaid personal use only (for example, unpaid hobby, learning, or
entertainment).

This Software Product may not be used by organizations other than publicly funded
charities; government divisions, agencies, or offices; or any other individual or entity
deriving income, directly or indirectly, from their use of the Software Product.

License Information

36

http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using

Wingware, a Delaware corporation, reserves the right to further clarify the terms of
Non-Commercial Use at its sole determination.

2. GRANT OF NON-EXCLUSIVE LICENSE

Wingware grants you the non-exclusive, non-transferable right to use this Software
Product.

You may make copies of the Software Product as reasonably necessary for its use.
Each copy must reproduce all copyright and other proprietary rights notices on or in
the Software Product.

All rights not expressly granted to you are retained by Wingware.

3. INTELLECTUAL PROPERTY RIGHTS RESERVED BY WINGWARE

The Software Product is owned by Wingware and is protected by United States and
international copyright laws and treaties, as well as other intellectual property laws
and treaties. You must not remove or alter any copyright notices on any copies of the
Software Product. This Software Product copy is licensed, not sold. You may not use,
copy, or distribute the Software Product, except as granted by this EULA, without
written authorization from Wingware or its designated agents. Furthermore, this EULA
does not grant you any rights in connection with any trademarks or service marks of
Wingware. Wingware reserves all intellectual property rights, including copyrights, and
trademark rights.

4. NO RIGHT TO TRANSFER

You may not rent, lease, lend, or in any way distribute or transfer any rights in this
EULA or the Software Product to third parties.

5. INDEMNIFICATION

You hereby agree to indemnify Wingware against and hold harmless Wingware from
any claims, lawsuits or other losses that arise out of your breach of any provision of
this EULA.

6. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is associated with a
separate license agreement is licensed to you under the terms of that license
agreement. This license does not apply to those portions of the Software Product.
Copies of these third party licenses are included in all copies of the Software Product.

License Information

37

7. SUPPORT SERVICES

Wingware may provide you with support services related to the Software Product. Use
of any such support services is governed by Wingware policies and programs
described in online documentation and/or other Wingware-provided materials.

As part of these support services, Wingware may make available bug lists, planned
feature lists, and other supplemental informational materials. WINGWARE MAKES
NO WARRANTY OF ANY KIND FOR THESE MATERIALS AND ASSUMES NO
LIABILITY WHATSOEVER FOR DAMAGES RESULTING FROM ANY USE OF
THESE MATERIALS. FURTHERMORE, YOU MAY NOT USE ANY MATERIALS
PROVIDED IN THIS WAY TO SUPPORT ANY CLAIM MADE AGAINST WINGWARE.

Any supplemental software code or related materials that Wingware provides to you
as part of the support services, in periodic updates to the Software Product or
otherwise, is to be considered part of the Software Product and is subject to the terms
and conditions of this EULA.

With respect to any technical information you provide to Wingware as part of the
support services, Wingware may use such information for its business purposes
without restriction, including for product support and development. Wingware will not
use such technical information in a form that personally identifies you without first
obtaining your permission.

9. TERMINATION WITHOUT PREJUDICE TO ANY OTHER RIGHTS

Wingware may terminate this EULA if you fail to comply with any term or condition of
this EULA. In such event, you must destroy all copies of the Software Product and
Software Product Licenses.

10
.
U.S. GOVERNMENT USE

If the Software Product is licensed under a U.S. Government contract, you
acknowledge that the software and related documentation are "commercial items," as
defined in 48 C.F.R 2.01, consisting of "commercial computer software" and
"commercial computer software documentation," as such terms are used in 48 C.F.R.
12.212 and 48 C.F.R. 227.7202-1. You also acknowledge that the software is
"commercial computer software" as defined in 48 C.F.R. 252.227-7014(a)(1). U.S.
Government agencies and entities and others acquiring under a U.S. Government
contract shall have only those rights, and shall be subject to all restrictions, set forth in
this EULA. Contractor/manufacturer is Wingware, P.O. Box 400527 Cambridge, MA
02140-0006, USA.

License Information

38

11
.
EXPORT RESTRICTIONS

You will not download, export, or re-export the Software Product, any part thereof, or
any software, tool, process, or service that is the direct product of the Software
Product, to any country, person, or entity -- even to foreign units of your own company
-- if such a transfer is in violation of U.S. export restrictions.

12
.
NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT AND SOFTWARE PRODUCT LICENSE
"AS IS," AND WINGWARE AND ITS THIRD PARTY SUPPLIERS AND LICENSORS
MAKE NO WARRANTY AS TO ITS USE, PERFORMANCE, OR OTHERWISE. TO
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, WINGWARE AND
ITS THIRD PARTY SUPPLIERS AND LICENSORS DISCLAIM ALL OTHER
REPRESENTATIONS, WARRANTIES, AND CONDITIONS,EXPRESS, IMPLIED,
STATUTORY, OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR
PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS WITH YOU.

13
.
LIMITATION OF LIABILITY

THIS LIMITATION OF LIABILITY IS TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW. IN NO EVENT SHALL WINGWARE OR ITS THIRD PARTY
SUPPLIERS AND LICENSORS BE LIABLE FOR ANY COSTS OF SUBSTITUTE
PRODUCTS OR SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF BUSINESS INFORMATION) ARISING OUT OF THIS
EULA OR THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR
THE FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF WINGWARE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE,
WINGWARE'S, AND ITS THIRD PARTY SUPPLIERS' AND LICENSORS', ENTIRE
LIABILITY ARISING OUT OF THIS EULA SHALL BE LIMITED TO THE LESSER OF
THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR
THE PRODUCT LIST PRICE; PROVIDED, HOWEVER, THAT IF YOU HAVE
ENTERED INTO A WINGWARE SUPPORT SERVICES AGREEMENT,

License Information

39

WINGWARE'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE
GOVERNED BY THE TERMS OF THAT AGREEMENT.

14
.
HIGH RISK ACTIVITIES

The Software Product is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous environments
requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft
navigation or communication systems, air traffic control, direct life support machines,
or weapons systems, in which the failure of the Software Product, or any software,
tool, process, or service that was developed using the Software Product, could lead
directly to death, personal injury, or severe physical or environmental damage ("High
Risk Activities"). Accordingly, Wingware and its suppliers and licensors specifically
disclaim any express or implied warranty of fitness for High Risk Activities. You agree
that Wingware and its suppliers and licensors will not be liable for any claims or
damages arising from the use of the Software Product, or any software, tool, process,
or service that was developed using the Software Product, in such applications.

15
.
GOVERNING LAW; ENTIRE AGREEMENT ; DISPUTE RESOLUTION

This EULA is governed by the laws of the Commonwealth of Massachusetts, U.S.A.,
excluding the application of any conflict of law rules. The United Nations Convention
on Contracts for the International Sale of Goods shall not apply.

This EULA is the entire agreement between Wingware and you, and supersedes any
other communications or advertising with respect to the Software Product; this EULA
may be modified only by written agreement signed by authorized representatives of
you and Wingware.

Unless otherwise agreed in writing, all disputes relating to this EULA (excepting any
dispute relating to intellectual property rights) shall be subject to final and binding
arbitration in the State of Massachusetts, in accordance with the Licensing Agreement
Arbitration Rules of the American Arbitration Association, with the losing party paying
all costs of arbitration. Arbitration must be by a member of the American Arbitration
Association. If any dispute arises under this EULA, the prevailing party shall be
reimbursed by the other party for any and all legal fees and costs associated
therewith.

16
.
GENERAL

License Information

40

If any provision of this EULA is held invalid, the remainder of this EULA shall continue
in full force and effect.

A waiver by either party of any term or condition of this EULA or any breach thereof, in
any one instance, shall not waive such term or condition or any subsequent breach
thereof.

17
.
OUTSIDE THE U.S.

If you are located outside the U.S., then the provisions of this Section shall apply. Les
parties aux présentes confirment leur volonté que cette convention de même que tous
les documents y compris tout avis qui s'y rattache, soient redigés en langue anglaise.
(translation: "The parties confirm that this EULA and all related documentation is and
will be in the English language.") You are responsible for complying with any local
laws in your jurisdiction which might impact your right to import, export or use the
Software Product, and you represent that you have complied with any regulations or
registration procedures required by applicable law to make this license enforceable.

18
.
TRADEMARKS

The following are trademarks or registered trademarks of Wingware: Wingware, the
feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE Professional,
Wing IDE Enterprise, Wing Debugger, and "The Intelligent Development Environment
for Python Programmers"

19
.
CONTACT INFORMATION

If you have any questions about this EULA, or if you want to contact Wingware for any
reason, please direct all correspondence to: Wingware, P.O. Box 400527, Cambridge,
MA 02140-0006, United States of America or send email to info at wingware.com.

9.2. Open Source License Information
Wing IDE incorporates the following open source technologies, most of which are
under OSI Certified Open Source licenses except as indicated in the footnotes:

• Crystal Clear -- An icon set by Everaldo -- LGPL v. 2.1 [1]
• docutils -- reStructuredText markup processing by David Goodger and

contributors-- Public Domain [2]

License Information

41

http://www.opensource.org/
http://www.kde-look.org/content/show.php/Crystal+Clear?content=25668
http://www.everaldo.com/
http://docutils.sourceforge.net/

• parsetools -- Python parse tree conversion tools by John Ehresman -- MIT
License

• pexpect -- Sub-process control library by Noah Spurrier, Richard Holden, Marco
Molteni, Kimberley Burchett, Robert Stone, Hartmut Goebel, Chad Schroeder,
Erick Tryzelaar, Dave Kirby, Ids vander Molen, George Todd, Noel Taylor,
Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco Lourenco, Glen
Mabey, Karthik Gurusamy, and Fernando Perez -- MIT License

• py2pdf -- Python source to PDF output converter by Dinu Gherman -- MIT
License

• PySide -- Python bindings for Qt by Nokia and contributors -- LGPL v. 2.1 [1]
• pysqlite -- Python bindings for sqlite by Gerhard Haering -- BSD-like custom

license [4]
• Python -- The Python programming language by Guido van Rossum, PythonLabs,

and many contributors -- Python Software Foundation License version 2 [3]
• Python Imaging Library -- Library for image manipulation with Python, written by

Secret Labs AB and Fredrik Lundh -- MIT License
• Qt -- Graphical user interface toolkit by many contributors and Digia -- LGPL v.

2.1 [1] [6]
• scintilla -- Source code editor component by Neil Hodgson and contributors -- MIT

License
• sqlite -- A self-contained, serverless, zero-configuration, transactional SQL

database engine -- Public domain [5]
• Tulliana-1.0 -- An icon set by M. Umut Pulat, based on Nuvola created by David

Vignoni -- LGPL v. 2.1 [1]
• A few stock icons from the GTK GUI development framework -- LGPL v. 2.1 [1]

Notes

[1] The LGPL requires us to redistribute the source code for all libraries linked into
Wing IDE. All of these modules are readily available on the internet. In some cases we
may have modifications that have not yet been incorporated into the official versions; if
you wish to obtain a copy of our version of the sources of any of these modules,
please email us at info at wingware.com.

[2] Docutils contains a few parts under other licenses (BSD, Python 2.1, Python 2.2,
Python 2.3, and GPL). See the COPYING.txt file in the source distribution for details.

[3] The Python Software Foundation License version 2 is an OSI Approved Open
Source license. It consists of a stack of licenses that also include other licenses that
apply to older parts of the Python code base. All of these are included in the OSI
Approved license: PSF License, BeOpen Python License, CNRI Python License, and

License Information

42

http://wingware.com/
http://pexpect.sourceforge.net/pexpect.html
http://python.net/~gherman/py2pdf.html
http://qt-project.org/wiki/PySide
http://pysqlite.org/
http://python.org/
http://www.pythonware.com/products/pil/
http://qt-project.org/
http://scintilla.org/
http://sqlite.org
http://www.kde-look.org/content/show.php/Tulliana?content=29610
mailto:info@wingware.com

CWI Python License. The intellectual property rights for Python are managed by the
Python Software Foundation.

[4] Not OSI Approved, but similar to other OSI approved licenses. The license grants
anyone to use the software for any purpose, including commercial applications.

[5] The source code states the author has disclaimed copyright of the source code.
The sqllite.org website states: "All of the deliverable code in SQLite has been
dedicated to the public domain by the authors. All code authors, and representatives
of the companies they work for, have signed affidavits dedicating their contributions to
the public domain and originals of those signed affidavits are stored in a firesafe at the
main offices of Hwaci. Anyone is free to copy, modify, publish, use, compile, sell, or
distribute the original SQLite code, either in source code form or as a compiled binary,
for any purpose, commercial or non-commercial, and by any means."

[6] Qt is available under several licenses. The LGPL v. 2.1 version of the software was
used for Wing IDE.

Scintilla Copyright

We are required by the license terms for Scintilla to include the following copyright
notice in this documentation:

Copyright 1998-2003 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Python Imaging Library Copyright

We are required by the license terms for Scintilla to include the following copyright
notice in this documentation:

License Information

43

http://python.org/psf

The Python Imaging Library (PIL) is

 Copyright ï¿½ 1997-2011 by Secret Labs AB
 Copyright ï¿½ 1995-2011 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation, you agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of Secret Labs AB or the author not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

License Information

44

	Wing IDE 101 Reference Manual
	Introduction
	1.1. Supported Platforms
	1.2. Supported Python versions
	1.3. Prerequisites for Installation
	1.4. Installing Wing IDE
	1.5. Running Wing IDE
	1.6. User Settings Directory
	1.7. Upgrading
	Compatibility Notes
	1.7.1. Fixing a Failed Upgrade

	1.8. Installation Details and Options
	1.8.1. Linux Installation Notes
	1.8.2. Remote Display on Linux
	1.8.3. Installing Extra Documentation

	1.9. Removing Wing IDE

	Customization
	2.1. Keyboard Personalities
	2.2. User Interface Options
	2.2.1. Display Style and Colors
	Color Configuration
	Add Color Palettes

	2.2.2. User Interface Layout
	2.2.3. Altering Text Display

	2.3. Preferences

	Source Code Editor
	3.1. Syntax Colorization
	3.2. Right-click Editor Menu
	3.3. Navigating Source
	3.4. File status and read-only files
	3.5. Transient, Sticky, and Locked Editors
	3.6. Indentation
	3.6.1. How Indent Style is Determined
	3.6.2. Indentation Preferences
	3.6.3. Auto-Indent
	3.6.4. The Tab Key
	3.6.5. Changing Block Indentation

	3.7. Brace Matching
	3.8. Support for files in .zip or .egg files
	3.9. Notes on Copy/Paste
	Smart Copy

	Search/Replace
	4.1. Toolbar Quick Search
	4.2. Search Tool
	4.3. Wildcard Search Syntax

	Interactive Python Shell
	5.1. Python Shell Options

	Debugger
	6.1. Setting Breakpoints
	6.2. Starting Debug
	6.3. Debugger Status
	6.4. Flow Control
	6.5. Viewing the Stack
	6.6. Viewing Debug Data
	6.6.1. Stack Data View
	6.6.1.1. Popup Menu Options

	6.6.2. Problems Handling Values

	6.7. Debug Process I/O
	6.8. Debugging Multi-threaded Code
	6.9. OS X Debugging Notes
	System-Provided Python
	MacPorts Python
	Debugging 32-bit Python on a 64-bit System

	Source Code Analysis
	7.1. How Analysis Works
	7.2. Static Analysis Limitations
	7.3. Helping Wing Analyze Code
	7.4. Analysis Disk Cache

	Trouble-shooting Guide
	8.1. Trouble-shooting Failure to Start
	8.2. Speeding up Wing
	8.3. Trouble-shooting Other Known Problems

	License Information
	9.1. Wing IDE Software License
	9.2. Open Source License Information

