
Introduction for New Users
This tutorial introduces Wing IDE by taking you through its feature set with a small
coding example. We strongly recommend using the Tutorial in Wing IDE's Help menu
when actually working through the tutorial, rather than reading the printed form. The
integrated form of the tutorial contains links into the IDE's functionality that are not
found here.

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, and "The Intelligent Development Environment" are trademarks or
registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Wingware shall not be liable for technical or editorial errors or omissions
contained in this document; nor for incidental or consequential damages resulting from
furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2014 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

Contents
Introduction for New Users 1

Wing IDE Tutorial 1

1.1. Tutorial: Getting Started 1

1.2. Tutorial: Getting Around Wing IDE 2

Context Menus 4

Configuring the Keyboard 4

Other Configuration Options 4

1.3. Tutorial: Check your Python Integration 5

1.4. Tutorial: Setting Python Path 7

1.5. Tutorial: Introduction to the Editor 8

1.6. Tutorial: Debugging 10

1.6.1. Tutorial: Debug I/O 11

1.6.2. Tutorial: Debug Process Exception Reporting 12

1.7. Tutorial: Indentation Features 13

1.8. Tutorial: Other Editor Features 14

1.9. Tutorial: Searching 15

Toolbar Search 15

Search Tool 16

Replacing 16

1.10. Tutorial: Further Reading 16

Wing IDE Tutorial
This tutorial introduces Wing IDE by taking you through its feature set with a small
coding example.

If you are new to programming, you may want to check out the book Python
Programming Fundamentals and accompanying screen casts, which use Wing IDE
101 to teach programming with Python.

To get started, press the Next (down arrow) icon in the toolbar immediately above this
page:

When using this tutorial with products other than Wing IDE Professional, please note
that the screen shots include tools and features only available in Wing IDE
Professional. These can safely be ignored and, when working with the tutorial within
Wing IDE's help viewer, those tools will not be discussed in the content that follows.

1.1. Tutorial: Getting Started
To get started, you need to:

(1) Install Python and Wing IDE

If you don't already have them on your system, install Python and Wing IDE. For
detailed instructions, see Installing Wing IDE.

(2) Start Wing IDE

Wing can be started from a menu, desktop, or tray icon or using the command line
executable. For detailed instructions, see Running the IDE.

If you don't have a license, you can obtain a 30-day trial the first time you start Wing.

Once Wing is running, you should switch to using the Tutorial listed in Wing's Help
menu because it contains links directly into the IDE's functionality (this includes step
(3) below).

(3) Copy the Tutorial Directory

Next, copy the entire tutorial directory out of your Wing IDE installation to a location
where you will have write access to the files in it. You can do this manually or use the
following link, which copy the tutorial into the selected directory: Copy Tutorial Now

On OS X, the the tutorial directory is inside Contents/Resources in the .app bundle
(this is listed as Install Directory in Wing's About box).

Wing IDE Tutorial

1

http://knuth.luther.edu/~leekent/IntroToComputing/
http://knuth.luther.edu/~leekent/IntroToComputing/
http://python.org/download
http://wingware.com/downloads
http://wingware.com/doc/install/installing
http://wingware.com/doc/install/running-the-ide

Note

We welcome feedback, which can be submitted with Submit Feedback in
Wing's Help menu or by emailing support at wingware.com

To get to the next page in the tutorial, use the Next Page icon shown in the toolbar
just above this text:

1.2. Tutorial: Getting Around Wing IDE
Let's start with some basics that will help you get around Wing IDE while working with
this tutorial.

Wing IDE's user interface is divided into an editor area and two toolboxes separated
by draggable dividers. Try pressing F1 and F2 now to show or hide the two toolboxes.
Also try Shift-F2 to maximize the editor area temporarily, hiding both tool areas and
toolbar until Shift-F2 is pressed again.

Wing IDE Tutorial

2

mailto:support@wingware.com

Tool and editor tabs can be dragged to rearrange the user interface, optionally
creating a new split. Right click on the tabs for a menu of additional options, such as
adding or removing splits or to move the toolbox from right to left. The number of splits
shown by default in toolboxes will vary according to the size of your monitor.

Notice that you can click on an already-active tool tab to minimize that tool area. Click
again on any tab to restore the toolbox to its previous size.

By default, the editor shows all open files in all splits, making it easy to work on
different parts of a file simultaneously. This can be changed by unchecking
Show All Files in All Splits in the right-click context menu on the editor tabs.

Splitting your editor area makes it easier to get around this tutorial. To do this now,
right click on the editor tab area and select Split Side by Side. On small monitors and
laptops, it may be preferable to create a new window for the tutorial by right clicking
on its tab and selected Move Wing IDE Help to New Window.

Wing IDE Tutorial

3

Context Menus

In general, right-clicking provides a menu for interacting with or configuring a part of
the user interface. The text that follows refers to these menus as "context menus".

Configuring the Keyboard

Use the Edit > Keyboard Personality menu or
User Interface > Keyboard > Personality preference to tell Wing to emulate another
editor, such as Visual Studio, VI/Vim, Emacs, Eclipse, or Brief.

The Configure Tab Key item in the Edit > Keyboard Personality menu or the
User Interface > Keyboard > Tab Key Action preference can be used to select
among available behaviors for the tab key. The default is to match the selected
Keyboard Personality. When the Keyboard Personality is set to Wing IDE, the tab key
acts differently according to context. For example, if lines are selected, repeated
presses of the tab key moves the lines among syntactically valid indent positions. And,
when the caret is at the end of a line, pressing the tab key adds one indent level.

Other Configuration Options

Wing's cross-platform GUI adjusts to the OS on which you are running it. This can be
overridden with the User Interface > Display Style preference. For example, to set a
dark background display style select Match Palette and set the
User Interface > Color Palette preference to either Black Background or Monokai:

Wing IDE Tutorial

4

The User Interface > Fonts > Display Font/Size and User
Interface > Fonts > Editor Font/Size preferences select fonts for the user interface
and editor.

The size and type of tools used in the toolbar at the top of Wing IDE's main window
can be changed by right clicking on one of the enabled tools.

For more information on adjusting the user interface to your needs, see the
Customization chapter of the manual.

1.3. Tutorial: Check your Python Integration
Before starting with some code, let's make sure that Wing has succeeded in finding
your Python installation. Bring up the Python Shell tool now from the Tools menu. If
all goes well, it should start up Python and show you the Python command prompt like
this:

Wing IDE Tutorial

5

http://wingware.com/doc/custom/index

If this is not working, or the wrong version of Python is being used, you can point Wing
in the right direction with the Python Executable setting in the
Python Configuration, available in the Edit menu.

An easy way to determine the path to use here is to start the Python you wish to use
with Wing and type the following at Python's >>> prompt:

import sys
sys.executable

This can also be typed into the IDLE that is associated with your Python install, if IDLE
is installed. On OS X this is generally the easiest way to find the correct executable to
use.

You will need to Restart Shell from Options in the Python Shell tool after altering
Python Executable.

Once the shell works, copy/paste or drag and drop these lines of Python code into it:

for i in range(0, 10):
 print('*' * i)

This should print a triangle as follows:

Wing IDE Tutorial

6

Notice that the shell removes common leading white space when blocks of code are
copied into it. This is useful when trying out code from source files.

Now type something in the shell, such as:

import sys
sys.getrefcount(i)

You can create as many instances of the Python Shell tool as you wish. Each one
runs in its own private process space that is kept totally separate from Wing IDE and
your debug process.

1.4. Tutorial: Setting Python Path
Whenever your Python source depends on PYTHONPATH, either set externally or by
altering sys.path at runtime, you will also need to tell Wing about your path.

This value can be entered in Python Path in the Configure Python dialog, which is
accessed from the Edit menu:

Wing IDE Tutorial

7

For this tutorial, you need to add the subdir sub-directory of your tutorials directory to
Python Path, as shown above. This directory contains a module used as part of the
first coding example.

Note that the full path to the directory subdir is used. This is strongly recommended
because it avoids potential problems finding source code when the starting directory is
ambiguous or changes over time. If relative paths are needed to make a project work
on different machines, use an environment variable like
${WING:PROJECT_DIR}/subdir. This is described in more detail in Environment
Variable Expansion.

The configuration used here is for illustrative purposes only. You could run the
example code without altering PYTHONPATH by moving the path_example.py file to
the same location as the example scripts, or by placing it into your Python
installation's site-packages directory, which is in the default PYTHONPATH.

1.5. Tutorial: Introduction to the Editor
Now we're ready to get started with some coding. Open up the file example1.py
within Wing by selecting Open from the File menu.

Scroll down to the bottom of example1.py and enter the following code:

Wing IDE Tutorial

8

http://wingware.com/doc/proj/variable-expansion
http://wingware.com/doc/proj/variable-expansion

news = ReadPythonNews(GetItemCount()

Press enter a few times. Note that Wing IDE auto-indents the subsequent lines and
adds red error indicators under them shortly after you stop typing. This indicates that
there is a syntax error in your code:

Once you correct the line and complete it by typing the final), the error indicators will
be removed. You should now have this complete line of code in your file:

news = ReadPythonNews(GetItemCount())

Then enter the following two additional lines of code:

PrintAsText(news)
PromptToContinue()
PrintAsHTML(news)

At this point you have a complete program that can be run in the debugger.

Wing IDE Tutorial

9

1.6. Tutorial: Debugging
The example1.py program you have just created connects to python.org via HTTP,
reads and parses the Python-related news feed in RDF format, and then prints the
most recent five items as text and HTML. Don't worry if you are working offline. The
script has canned data it will use when it cannot connect to python.org.

To start debugging, set a breakpoint on the line that reads return 5 in the
GetItemCount function. This can be done by clicking on the line and selecting the
Break toolbar item, or by clicking on the left-most margin to the left of the line. The
breakpoint should appear as a filled red circle:

Next start the debugger from the bug icon in the toolbar or the Start/Continue item in
the Debug menu.

Wing will run to the breakpoint and stop, placing a red indicator on the line. Notice that
the toolbar changes to include additional debug tools, as shown below:

Your display may vary depending on the size of your screen or if you have altered the
toolbar's configuration. Wing displays tooltips explaining what the tools do when you
mouse over them.

Now you can inspect the program state at that point with the Stack Data tool and by
going up and down the stack from the toolbar or Debug menu. The stack can also be
viewed as a list using the Call Stack tool.

Notice that the Debug status indicator in the lower left of Wing's main window changes
color depending on the state of the debug process. Mouse over the indicator to see
detailed status in a tooltip:

Wing IDE Tutorial

10

Next, try stepping out to the enclosing call to ReadPythonNews. In this particular
context, you can achieve this in a single click with the Step Out toolbar icon or Debug
menu item. Two clicks on Step Over also work. ReadPythonNews is a good function
to step through in order to try out the basic debugger features covered above.

1.6.1. Tutorial: Debug I/O

Before continuing any further in the debugger, bring up the Debug I/O tool so you can
watch the subsequent output from the program. This is also where keyboard input
takes place in debug code that requests for it.

Once you step over the line PrintAsText(news) you should see output appear as
follows:

Wing IDE Tutorial

11

For code that tries to read from stdin or uses input (or in Python 2.x raw_input), the
Debug I/O tool is where you would type your input to your program. Try this now by
stepping over the PromptToContinue call. You will see the prompt "Press Enter to
Continue" appear in the Debug I/O tool and the debugger will not complete the
Step Over operation until you press Enter while focus is in the Debug I/O tool.

Note that you can also configure Wing to use an external console from the Options
menu in the Debug I/O tool. This is useful for code that depends on details of the
Debug I/O environment (such as cursor control with special output characters).

1.6.2. Tutorial: Debug Process Exception Reporting

Wing's debugger reports any exceptions that would be printed when running the code
outside of the debugger.

Try this out by continuing execution of the debug process with the Debug toolbar item
or Start / Continue item in the Debug menu.

Wing will stop on an incorrect line of code in PrintAsHTML and will report the error in
the Exceptions tool:

Wing IDE Tutorial

12

Notice that this tool highlights the current stack frame and that you can click on frames
to navigate the exception backtrace. Whenever you are stopped on an exception, the
Debugger Status indicator in the lower left of Wing's main window turns red.

Once you reach an exception in the debugger, you can correct your code, stop the
debugger with the red Stop icon in the toolbar, and then start debugging again.

1.7. Tutorial: Indentation Features
Since indentation is syntactically significant in Python, Wing provides a number of
features to make working with indentation easier.

Auto-Indentation

By now you will have noticed that Wing auto-indents lines as you type, according to
context. This can be disabled with the Auto-Indent preference.

Wing also adjusts the indentation of blocks of code that are pasted into the editor. If
the indentation change is not what you wanted, a single Undo removes the
indentation adjustment, if there was one.

Block Indentation

Wing IDE Tutorial

13

In Wing's default keyboard personality, the Tab key is defined to indent the current
line or blocks of lines, rather then entering a tab character (which can be done with
Ctrl-Tab). As noted earlier, the Tab Key Action preference can be used to customize
how the tab key behaves.

One or more selected lines can be increased or reduced in indentation, or matche
indentation according to context, from the Indentation toolbar group:

Repeated presses of the Match Indent tool will move the selected lines among the
possible correct indent levels for that context.

These indentation features are also available in the Source menu, where their key
bindings are listed.

1.8. Tutorial: Other Editor Features
There are a number of other editor features that are worth knowing about:

Goto-Line

Navigate quickly to a numbered source line with the Goto Line item in the Edit menu,
or with the key binding displayed there. In some keyboard personalities, the line
number is typed into the data entry area that appears at the bottom of the window.
Press Enter to complete the action.

Selecting Code

Wing supports character, line, and block mode selection from the Selection Mode
item in the Edit menu.

In Python code, the Select sub-menu in the Edit menu can be used to easily select
and traverse logical blocks of code. The Select More and Select Less operations are
particularly useful when preparing to type over or copy/paste ranges of text. Try these
out now on urllib in ReadPythonNews in example1.py. Each repeated press of
Ctrl-Down will select more code in logical units. Press Ctrl-Up to select less code.

The other operations in the Select sub-menu can be used for selecting and moving
forward or backward over whole statements, blocks, or scopes. If you plan to use
these and your selected User Interface > Keyboard > Keyboard Personality
preference does not support them, then you will want to define key bindings for them
using the User Interface > Keyboard > Custom Key Bindings preference. The
command names are select-x, next-x, and previous-x where x is either statement,
block, or scope.

Wing IDE Tutorial

14

Block Commenting

Lines of code can be commented out or un-commented quickly from the Source
menu . In Python code, the Block Commenting Style preference controls the type of
commenting that is used. The default is to use indented single # characters since this
works better with some of Wing's other features.

Brace Matching

Wing highlights brace matching as you type unless disabled from the Auto
Brace Match preference. The Match Braces item in the Source menu causes Wing
to select all the code that is contained in the nearest matching braces found from the
current insertion point on the editor. Repeated invocations of the command will
traverse outward or forward in the file.

Text Reformatting

Code can be re-wrapped to the configured Reformatting Wrap Column with the
Justify Rewrap item in the Source menu. This will limit wrapping to a single logical
line of code, so it can be used to reformat an argument list or long list or tuple without
altering surrounding code.

1.9. Tutorial: Searching
Wing IDE provides several different interfaces for searching your code. Which you use
depends on your task.

Toolbar Search

A quick way to search through the current editor is to enter your search string in the
area provided in the toolbar:

If you enter only lower case the search will be case-insensitive. Entering one or more
upper-case letter causes the search to become case-sensitive.

Try this now in example1.py: Type GetItem in the toolbar search area and Wing will
immediately, starting with the first letter typed, search for matching text in the editor.
Press the Enter key to move on to the next match, wrapping around to the top of the
file if necessary.

Toolbar-based searches always go forward (downward) in the file from the current
cursor position.

Wing IDE Tutorial

15

Search Tool

The Search tool provides a familiar GUI-based search and replace tool for operating
on the current editor. Key bindings for operations on this tool are given in the
Search and Replace group in the Edit menu.

Searches may span the whole file or be constrained to the current selection, can be
case sensitive or insensitive, and may optionally be constrained to matching only
whole words.

By default, searching is incremental while you type your search string. To disable this,
uncheck Incremental in the Options menu.

Replacing

When the Show Replace item in Options is activated, Wing will show an area for
entering a replace string and add Replace and Replace All buttons to the Search
tool:

Try replacing example1.py with search string PrintAs and replace string OutputAs.

Select the first result match and then Replace repeatedly. One search match will be
replaced at a time. Search will occur again after each replace automatically unless
you turn off the Find After Replace option. Changes can be undone in the editor, one
at a time. Do this now to avoid saving this replace operation.

Next, try Replace All instead. Wing will simply replace all occurrences in the file at the
same time. When this is done, a single undo in the editor will cancel the entire replace
operation.

1.10. Tutorial: Further Reading
Congratulations! You've finished the tutorial. As you work with Wing IDE on your own
software development projects, the following resources may be useful:

Wing IDE Tutorial

16

• Wing IDE Support Website which includes our mailing lists and other information
for Wing IDE users.

• Wing IDE Reference Manual which documents the features in detail.

Wing IDE Tutorial

17

http://wingware.com/support
http://wingware.com/doc/manual

	Introduction for New Users
	Wing IDE Tutorial
	1.1. Tutorial: Getting Started
	1.2. Tutorial: Getting Around Wing IDE
	Context Menus
	Configuring the Keyboard
	Other Configuration Options

	1.3. Tutorial: Check your Python Integration
	1.4. Tutorial: Setting Python Path
	1.5. Tutorial: Introduction to the Editor
	1.6. Tutorial: Debugging
	1.6.1. Tutorial: Debug I/O
	1.6.2. Tutorial: Debug Process Exception Reporting

	1.7. Tutorial: Indentation Features
	1.8. Tutorial: Other Editor Features
	1.9. Tutorial: Searching
	Toolbar Search
	Search Tool
	Replacing

	1.10. Tutorial: Further Reading

