Wing IDE Reference Manual
Wing IDE Professional

Wingware

WWW.wingware.com

Version 4.1.13
May 3, 2013

Contents

Introduction

1.1. Product Levels

1.2. Licenses

1.3. Supported Platforms

1.4. Supported Python versions
1.5. Technical Support

1.6. Prerequisites for Installation
1.7. Installing

1.8. Running the IDE

1.9. Installing your License
1.10. User Settings Directory
1.11. Upgrading

1.11.1. Migrating from older versions of Wing
1.11.2. Fixing a Failed Upgrade

1.12. Installation Details and Options

1.12.1. Linux Installation Notes
1.12.2. Installing Extra Documentation
1.12.3. Source Code Installation

1.13. Removing Wing IDE
1.14. Command Line Usage

Customization

2.1. Keyboard Personalities

2.1.1. Key Equivalents
2.1.2. Key Maps
2.1.3. Key Names
2.2. User Interface Options
2.2.1. Windowing Policies
2.2.2. User Interface Layout
2.2.3. Altering Text Display
2.2.4. Setting Overall Display Theme

2.3. Preferences

2.3.1. Preferences File Layers
2.3.2. Preferences File Format

2.4. Perspectives
2.5. File Filters

Project Manager

3.1. Creating a Project
3.2. Removing Files and Directories
3.3. Saving the Project
3.4. Sorting the View
3.5. Navigating to Files
3.5.1. Keyboard Navigation
3.6. Sharing Projects
3.7. Project-wide Properties

Environment

Debug

Options

Extensions

Testing

3.7.1. Variable Expansion
3.8. Per-file Properties

File Attributes

Editor

Environment

Debug

Testing

Source Code Editor

4.1. Syntax Colorization

4.2. Right-click Editor Menu

4.3. Navigating Source

4.4. File status and read-only files
4.5. Transient vs. Sticky Editors

4.6. Auto-completion

4.7. Source Assistant

4.8. Auto-editing

4.9. User-defined Bookmarks
4.10. Code Snippets

User Interface
Contexts
Key Bindings
Execution and Data Entry
Auto-completion
Snippet Syntax
Indentation and Line Endings
Cursor Placement
Snippet Directory Layout
File Types
Contexts
Configuration
Commands
Scripting Snippets
4.11. Indentation
4.11.1. How Indent Style is Determined

4.11.2. Indentation Preferences
4.11.3. Indentation Policy
4.11.4. Auto-Indent
4.11.5. The Tab Key
4.11.6. Checking Indentation
4.11.7. Changing Block Indentation
4.11.8. Indentation Manager
4.12. Structural Folding
4.13. Brace Matching
4.14. Support for files in .zip or .egg files
4.15. Keyboard Macros
4.16. Notes on Copy/Paste

4.17. Auto-reloading Changed Files

4.18. Auto-save
Search/Replace

5.1. Toolbar Quick Search
5.2. Keyboard-driven Mini-Search/Replace
5.3. Search Tool
5.4. Search in Files Tool
5.4.1. Replace in Multiple Files
5.5. Find Points of Use
5.6. Wildcard Search Syntax

Refactoring

6.1. Rename Symbol

6.2. Move Symbol

6.3. Extract Function / Method
6.4. Introduce Variable

Diff /Merge Tool
Diff/Merge Options
Source Code Browser

8.1. Display Choices

8.1.1. Browse Project Modules
8.1.2. Browsing Project Classes
8.1.3. Viewing Current Module

8.2. Display Filters

8.2.1. Filtering Scope and Source
8.2.2. Filtering Construct Type

8.3. Sorting the Browser Display
8.4. Navigating the Views
8.5. Browser Keyboard Navigation

Interactive Python Shell

9.1. Python Shell Auto-completion

9.2. Python Shell Options
OS Commands Tool

10.1. OS Command Properties
Unit Testing

11.1. Project Test Files
11.2. Running Tests

11.3. Running unittest Tests From the Command Line
Debugger

12.1. Quick Start

12.2. Specifying Main Entry Point
12.3. Debug Properties

12.4. Setting Breakpoints

Breakpoint Types

Breakpoint Attributes

Breakpoints Tool

Keyboard Modifiers for Breakpoint Margin

12.5. Starting Debug

12.6. Debugger Status
12.7. Flow Control

12.8. Viewing the Stack
12.9. Viewing Debug Data

12.9.1. Stack Data View
12.9.1.1. Popup Menu Options
12.9.1.2. Filtering Value Display
12.9.2. Watching Values
12.9.3. Evaluating Expressions
12.9.4. Problems Handling Values

12.10. Debug Process I/O

12.10.1. External I/O Consoles
12.10.2. Disabling Debug Process I/O Multiplexing

12.11. Interactive Debug Probe

12.11.1. Managing Program State
12.11.2. Debug Probe Options

12.12. Debugging Multi-threaded Code
12.13. Managing Exceptions
Exception Reporting Mode

Reporting Logged Exceptions
Exception Type Filters

12.14. Running Without Debug
Advanced Debugging Topics

13.1. Debugging Externally Launched Code

13.1.1. Importing the Debugger
13.1.2. Debug Server Configuration
13.1.3. Debugger API
13.1.4. Debugging Embedded Python Code
13.2. Remote Debugging
13.2.1. File Location Maps
13.2.1.1. File Location Map Examples

13.2.2. Remote Debugging Example
13.2.3. Installing the Debugger Core

13.3. Attaching and Detaching

13.3.1. Access Control

13.3.2. Detaching

13.3.3. Attaching

13.3.4. Identifying Foreign Processes
13.3.5. Constraints

13.4. OS X Debugging Notes

System-Provided Python
MacPorts Python
Debugging 32-bit Python on a 64-bit System

13.5. Debugger Limitations
Integrated Version Control

14.1. Version Control Tool Panel

14.2. Common Version Control Operations
14.3. Bazaar

14.4. CVS

14.5. Git

14.6. Mercurial

14.7. Perforce

14.8. Subversion

14.9. Version Control Configuration

14.9.1. Configuring SSH
14.9.2. Configuring Subversion
14.9.3. Configuring CVS

Source Code Analysis

15.1. How Analysis Works

15.2. Static Analysis Limitations
15.3. Helping Wing Analyze Code
15.4. Analysis Disk Cache

PyLint Integration
Scripting and Extending Wing IDE

17.1. Scripting Example
17.2. Getting Started

Naming Commands
Reloading Scripts
Overriding Internal Commands

17.3. Script Syntax

Script Attributes

Arglnfo

Commonly Used Types
Commonly Used Formlets
Magic Default Argument Values
GUI Contexts

Top-level Attributes

Importing Other Modules

Internationalization and Localization
Plugins

17.4. Scripting API

17.5. Advanced Scripting

Example
How Script Reloading Works

Trouble-shooting Guide

18.1. Trouble-shooting Failure to Start
18.2. Issues on Microsoft Windows

18.3. Issues on Linux

18.4. Trouble-shooting Failure to Debug

18.4.1. Failure to Start Debug

18.4.2. Failure to Stop on Breakpoints or Show Source Code
18.4.3. Failure to Stop on Exceptions

18.4.4. Extra Debugger Exceptions

18.5. Obtaining Diagnostic Output

18.6. Speeding up Wing

18.7. Failure to Detect HTTP Proxy and Connect to wingware.com
18.8. Trouble-shooting Failure to Open Filenames Containing Spaces

18.9. Trouble-shooting Failure to Print
Preferences Reference

User Interface

Files

Editor

Debugger

Source Analysis
Network

IDE Extension Scripting
Version Control

Internal Preferences

Core Preferences

10

User Interface Preferences
Editor Preferences

Project Manager Preferences
Debugger Preferences

Source Analysis Preferences
Command Reference

20.1. Top-level Commands

Application Control Commands
Dock Window Commands
Document Viewer Commands
Global Documentation Commands
Window Commands

Wing Tips Commands

20.2. Project Manager Commands

Project Manager Commands
Project View Commands

20.3. Editor Commands

Editor Browse Mode Commands
Editor Insert Mode Commands
Editor Non Modal Commands
Editor Panel Commands

Editor Replace Mode Commands
Editor Split Commands

Editor Visual Mode Commands
Active Editor Commands
General Editor Commands

Shell Or Editor Commands
Bookmark View Commands
Snippet Commands

Snippet View Commands

20.4. Search Manager Commands

Toolbar Search Commands

Search Manager Commands

Search Manager Instance Commands
20.5. Unit Testing Commands

Unit Testing Commands
20.6. Version Control Commands

Subversion Commands

Git Commands

Bazaar Commands

C V S Commands

Mercurial Commands

Perforce Commands

Version Control Command Map
20.7. Debugger Commands

Debugger Commands

Debugger Watch Commands

Call Stack View Commands

Exceptions Commands

Breakpoint View Commands
20.8. Script-provided Add-on Commands

Editor Extensions Script

Django Script

Django Script

Debugger Extensions Script

Emacs Extensions Script

Brief Script

Pylintpanel Script

Testapi Script

Key Binding Reference

21.1. Normal Personality

21.2. Emacs Personality

21.3. VI/VIM Personality

21.4. Visual Studio Personality

21.5. OS X Personality

21.6. Eclipse (Experimental) Personality

12

21.7. Brief Personality
License Information

22.1. Wing IDE Software License

22.2. Open Source License Information

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, and “The Intelligent Development Environment” are trademarks or registered
trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Wingware shall not be liable for technical or editorial errors or omissions contained
in this document; nor for incidental or consequential damages resulting from furnishing,
performance, or use of this material.

Hardware and software products mentioned herein are used for identification purposes only
and may be trademarks of their respective owners.

Copyright (c) 1999-2012 by Wingware. All rights reserved.:

Wingware

P.0. Box 400527
Cambridge, MA 02140-0006
United States of America

Introduction

Thanks for choosing Wingware’s Wing IDE! This manual will help you get started and
serves as a reference for the entire feature set of this product.

The manual is organized by major functional area of Wing IDE, including source code
editor, project manager, source browser (Wing IDE Professional only), and debugger.
Several appendices document the entire command set, provide pointers to resources and
tips for Wing and Python users, and list the full software license.

The rest of this chapter describes how to install and start using Wing IDE. If you hate
reading manuals, you should be able to get started by reading this chapter only, or try the
quick start guide or tutorial.

Key Concepts

Throughout this manual, key concepts, important notes, and non-obvious features are
highlighted in the same way as this paragraph. If you are skimming only, look for
these marks.

1.1. Product Levels

This manual is for the Wing IDE Professional product level of the Wing IDE product line,
which currently includes Wing IDE Professional, Wing IDE Personal, and Wing IDE 101.

Wing IDE Professional is the full-featured Wing IDE product, and may be licensed for
commercial or non-commercial uses. Wing IDE Personal is for non-commercial use only
and contains a subset of the features found in Wing IDE Professional. Both products are
commercial products for sale from our website; Wing IDE Personal is not a free download.

Wing IDE 101 is a heavily scaled back IDE that was designed for teaching entry level
computer science courses. It is free to download and use for educational and personal use.

13

14

Wing IDE Professional, Wing IDE Personal, and Wing IDE 101 are independent products
and may be installed at the same time on your system without interfering with each other.

For a list of features in each product level, please refer to http://wingware.com /wingide /features.

1.2. Licenses

Wing IDE requires a separate license for each developer working with the product. For the
full license text, see the Software License.

License Activation

To run for more than 10 minutes, Wing IDE requires activation of a time-limited trial or
permanent purchased license. Time-limited trials last for 10 days and can be renewed two
times, for a total or 30 days.

An activation ties the license to the machine through a series of checks of the hardware
connected to the system. This information is never transmitted over the internet. Instead
an SHA hash of some of the values is passed back and forth so that the machine will be
identifiable without us knowing anything specific about it.

The machine identity metrics used for activation are designed to be forgiving so that
replacing parts of your machine’s hardware or upgrading the machine will usually not
require another activation. By the same token, activating multiple times on the same
machine (for example if the activation file is lost) usually does not increase your activation
count.

Licenses come with ten activations per year by default and additional activations can be
obtained from the self-serve license manager or by emailing sales at wingware.com. As
a fall-back in cases of emergency where we cannot be contacted and you don’t have an
activation, Wing IDE will run for 10 minutes at a time without any license at all, or a trial
license can be used until any license problem is resolved.

See Installing Your License for more information on obtaining and activating licenses.

1.3. Supported Platforms

This version of Wing IDE is available for Microsoft Windows, Linux, Mac OS X (with
X11 Server), and some other operating systems where customers compile the product from
source code.

http://wingware.com/wingide/features
http://wingware.com/license
mailto:sales@wingware.com

15

Microsoft Windows

Wing IDE supports Windows 2000, XP, 2003 Server, Vista, Windows 7, and Windows 8 for
Intel processors. Windows 95, 98, and ME are not supported and will not work. Windows
NT4 is not supported but may work with IE5+ installed.

Linux/Intel

Wing IDE runs on Linux versions with glibc2.2 or later (e.g. Ubuntu 6+, RedHat 7.1+,
Mandrake 8.0+, SUSE 7.1+, and Debian 3.0+).

On Suse, you may need to install the gmp and python packages, or install Python from
source, since Python is not installed by default here.

Mac OS X

Wing IDE runs on Mac OS X 10.3.94. Wing IDE for OS X also requires an X11 Server
and Window Manager. For details see OS X Quick Start Guide.

Other Platforms

Wing IDE can be compiled from source by customers wishing to use it on other operat-
ing systems (such as Linux PPC, Free BSD, or Solaris). This requires a non-disclosure
agreement.

1.4. Supported Python versions

Wing supports CPython 2.0 through 3.3, Stackless Python 2.4 through 3.2, and cygwin
Python 2.2 through 2.5. Wing can also be used with IronPython and Jython, but the
debugger will not work with these implementations of Python.

Wing’s debugger is pre-built for each of these versions of Python with and without —-with-
pydebug. Both 32-bit and 64-bit compilations are supported. CPython --with-framework
builds are also supported on OS X. If necessary, it is possible for customers to compile
Wing’s debugger against other custom versions of Python.

Before installing Wing, you may need to download Python and install it if you do not
already have it on your machine.

On Windows, Python must be installed using one of the installers from the python.org (or
by building from source if desired).

http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://python.org/download

16

On Linuz, most distributions come with Python. Installing Python is usually only neces-
sary on SUSE or a custom-built Linux installation.

On SUSFE Linuzx, you can install the gmp and python packages that come with your dis-
tribution, or install from the materials available through the links given above.

On Mac OS X, Wing IDE only supports Python 2.2 and later.

1.5. Technical Support
If you have problems installing or using Wing IDE, please submit a bug report or feedback
using the Submit Bug Report or Submit Feedback items in Wing IDE’s Help menu.

Wingware Technical Support can also be contacted by email at support at wingware.com,
or online at http://wingware.com/support.

Bug reports can also be sent by email to bugs at wingware.com. Please include your OS
and product version number and details of the problem with each report.

If you are submitting a bug report via email, see Obtaining Diagnostic Output for more
information on how to capture a log of Wing IDE and debug process internals. Whenever
possible, these should be included with email-based bug reports.

1.6. Prerequisites for Installation
To run Wing IDE, you will need to obtain and install the following, if not already on your
system:

Prerequisites for all platforms

e A downloaded copy of Wing IDE
e A supported version of Python

e A working TCP/IP network configuration (for the debugger; no outside access to the
internet is required)

Additional Prerequisities for Mac OS X

mailto:support@wingware.com
http://wingware.com/support
mailto:bugs@wingware.com
http://wingware.com/downloads

17

To run Wing IDE on OS X, you will need an X11 window server. We strongly recommend
XQuartz since the X11 provided with OS X often contains more bugs that affect key
bindings, the clipboard, and integration with Spaces.

See the OS X How-To for details on installing and using Wing on OS X.

1.7. Installing

Before installing Wing IDE, be sure that you have installed the necessary prerequisites.
If you are upgrading from a previous version, see Upgrading first.

Note: The installation location for Wing IDE is referred to as WINGHOME. On OS X this is
the Contents/Mac0S directory within Wing’s .app folder.

Windows

Install Wing IDE by running the downloaded executable. Wing'’s files are installed by
default in C:\Program Files\Wing IDE 4.1, but this location may be modified during
installation. Wing will also create a User Settings Directory in the location appropriate
for your version of Windows. This is used to store preferences and other settings.

The Windows installer supports a /silent command line option that uses the default
options, including removing any prior install of version 4.1 of Wing IDE. If a prior install
is removed, a dialog with a progress bar will appear. You can also use a /dir=<dir name>
option to specify an alternate installation directory.

Linux (glibc 2.2+)

Use the RPM, Debian package, or tar file installer as appropriate for your system type.
Installation from packages is at /usr/lib/wingide4.1 or at the selected location when
installing from the tar file. Wing will also create a User Settings Directory in
~/.wingide4, which is used to store preferences and other settings.

For more information, see the Linux installation details.
Mac OS X 10.3.9+

Wing IDE on Mac OS X requires that you first install an X11 Server. For details on
installing and running on OS X, see the OS X Quickstart.

http://xquartz.macosforge.org/

18

1.8. Running the IDE

For a quick introduction to Wing’s features, refer to the Wing IDE Quickstart Guide.
For a more gentle in-depth start, see the Wing IDE Tutorial.

On Windows, start Wing IDE from the Program group of the Start menu. You can also
start Wing from the command line with wing.exe (located inside the Wing IDE installation
directory).

On Linux/Unix, just execute wing4.1 (or wing located inside the Wing IDE installation
directory).

On Mac OS X, start Wing IDE by double clicking on the app folder or from the command
line using Contents/Mac0S/wing inside the Wing IDE app folder. For the latter, you will
need to start your X11 Server manually first and may need to set your DISPLAY environment
variable.

1.9. Installing your License

Wing IDE requires a time-limited trial or permanent license and the license needs to be
activated on each machine (see the Licenses section for general information). When Wing
IDE is first started, you can obtain a trial licence, purchase a permanent license, install &
activate a permanent license, or use Wing for up to 10 minutes without any license:

No License Found =[O x|

Wing is running without a valid license. You may now:
IEI Obtain or extend a trial license
Purchase a permanent license

Install and activate a permanent license.
Enter license id:

10 minute emergency sessian

&P continue| ¥ Cancel

Trial Licenses

Trial licenses allow evaluation of Wing IDE for 10 days, with an option to extend the
evaluation twice for up to 30 days total (or more on request). The most convenient way to

19

obtain a trial license is to ask Wing IDE to connect directly to wingware.com (via http,
TCP/IP port 80). After the trial license is obtained, Wing will not attempt to connect to
wingware.com (or any other site) unless you submit feedback or a bug report through the
Help menu.

Activate Trial License = O] x|

s ConnectWing IDE directly to wingware.cam

Activate manually at http:/fwingware. com/activate. You
will need your license id TNX3P-BFECQ-CYWS9-6QF2T
and request code RLX24-LEWNK-DGEEX-HMTWL. Then
enter the provided activation key here:

If you're unable or unwilling to connect Wing IDE directly to wingware.com, you can
go to http://wingware.com/activate and enter the license id and activation request num-
ber obtained from Wing. After entering this information, you will be given an activation
key which you can enter into Wing’s dialog box to complete the activation. This is ex-
actly the same exchange of information that occurs when Wing IDE connects directly to
wingware.com to obtain a trial license.

If activation fails, Wing will provide a way to configure an http proxy. Wing tries to detect
and use proxies by default but in some cases they will need to be manually configured.
Please ask your network administrator if you do not know what proxy settings to use. See
also how to determine proxy settings.

If you run into problems or need additional evaluation time, please email us at sales at
wingware.com.

Permanent Licenses

Permanent licenses and upgrades may be purchased in the online store at
http://wingware.com/store. Permanent licenses include free upgrades through the 4.*
version series. Wing IDE Professional licenses also allow access to the product source code
via http://wingware.com/downloads (requires signed non-disclosure agreement).

Activating on Shared Drives

When Wing is installed on a shared drive (for example a USB keydrive, or on a file server),
the User Settings Directory where the license activation is stored may be accessed from
several different computers.

http://wingware.com/activate
http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using
mailto:sales@wingware.com
mailto:sales@wingware.com
http://wingware.com/store
http://wingware.com/downloads
http://wingware.com/pub/wingide/support/source-non-discl.pdf

20

In this case, Wing must be activated once on each computer. The resulting extra activations
will be stored as license.actl, license.act2, and so forth, and Wing will automatically
select the appropriate activation depending on where it is running.

Obtaining Additional Activations

If you run out of activations, you can use the self-serve license manager or email us at sales
at wingware.com to obtain additional activations on any legitimately purchased license.

1.10. User Settings Directory

The first time you run Wing, it will create your User Settings Directory automatically.
This directory is used to store your license, preferences, auto-save files, recent lists, and
other files used internally by Wing. If the directory cannot be created, Wing will exit.

The settings directory is created in a location appropriate to your operating system. The
location is listed as your Settings Directory in the About Box accessible from the Help
menu.

These are the locations used by Wing;:
Linux/Unix -- “/.wingide4 (a sub-directory of your home directory)

Windows -- In Wing IDE 4 within the per-user application data directory. The location
varies by version of Windows. For Windows 2000 and XP running on c¢: with an English
localization the location is:

c:\Documents and Settings\${usernamel}\Application Data\Wing IDE 4
For Vista running on c: with an English localization the location is:
c:\Users\${username}\AppData\Roaming\Wing IDE 4

Wing also creates a Cache Directory that contains the source analysis cache. This is often
but not always in the same location as the above. On Windows, this directory is usually in
the per-user directory under Local Settings on 2000 and XP and under Local on Vista.
This directory is also listed in the About Box.

http://wingware.com/license
mailto:sales@wingware.com
mailto:sales@wingware.com

21

1.11. Upgrading

If you are upgrading within the same minor version number of Wing (for example from
3.0 to 3.0.x) this will replace your previous installation. Once you have upgraded, your
previous preferences and settings should remain and you should immediately be able to
start using Wing.

If you are upgrading across major releases (for example from 2.1 to 3.0), this will install
the new version along side your old version of Wing.

To install an upgrade, follow the steps described in Installing

1.11.1. Migrating from older versions of Wing

Moving to Wing IDE 4.x from earlier versions should be easy. The first time you start
Wing IDE 4.x, it will automatically convert your preferences from Wing IDE 2.x or 3.x
and place them into your User Settings Directory.

Wing IDE 4.x can be installed and used side by side with older versions of Wing and
operates completely independently.

e Licensing

Licenses for Wing IDE 1.x through 3.x must be upgraded before they can be activated for
Wing IDE 4.x.

Wing IDE 2.x and 3.x licenses can be upgraded in our online store. Wing IDE 1.x licenses
must be upgraded by contacting sales@wingware.com

e Converting Projects

Wing IDE 2.x and 3.x project files will be converted as they are opened and marked untitled
so they can be saved under a new name. You should not overwrite your old project files
as long as you still plan to use your earlier version of Wing IDE with them. Wing IDE 4.x
project files cannot be read by earlier versions of Wing.

When version 2.x projects are converted, Wing will automatically replace your old project’s
file list with one or more auto-updating directory entries. You may wish to prune the
project’s contents after conversion, by adding and removing items, or editing their settings
by right clicking on them and selecting Directory Properties.

http://wingware.com/store/upgrade

22

1.11.2. Fixing a Failed Upgrade

In rare cases upgrading may fail to overwrite old files, resulting in random or bizarre
behaviors and crashing. The fix for this problem is to completely uninstall and manually
remove remaining files before installing the upgrade again.

Windows

To uninstall on Windows, run the Add/Remove Programs control panel to uninstall Wing
IDE. Then go into the directory where Wing was located and manually remove any re-
maining folders and files.

Linux RPM

If you installed Wing IDE for Linux from RPM, issue the command rpm -e wingide4.1.
Then go into /usr/lib/wingide4.1 and remove any remaining files and directories.

Linux Debian

If you installed Wing IDE for Linux from Debian package, issue the command dpkg -r
wingide4.1. Then go into /usr/lib/wingide4.1 and remove any remaining files and
directories.

Linux Tar

If you installed Wing IDE for Linux from the tar distribution, find your Wing installation
directory and run the wing-uninstall script located there. Once done, manually remove
any remaining files and directories.

Mac OS X
On Mac OS X, just drag the entire Wing IDE application folder to the trash.

If this procedure does not solve the problem, try moving aside the User Settings Direc-
tory and then starting Wing. If this works, try restoring files from the old user settings
directory one by one to find the problem. Key files to try are license.act*, preferences
and recent*. Then submit a bug report to support@wingware.com with the offending
file.

23

1.12. Installation Details and Options

This section provides some additional detail for installing Wing and describes installation
options for advanced users.

1.12.1. Linux Installation Notes

On Linux, Wing can be installed from RPM, Debian package, or from tar archive. Use the
latter if you do not have root access on your machine or wish to install Wing somewhere
other than /usr/lib/wingide4.1. Be sure to use the 64-bit packages if you are on a 64-bit
system.

Installing from RPM:

Wing can be installed from an RPM package on RPM-based systems, such as RedHat and
Mandriva. To install, run rpm -i wingide4.1-4.1.13-1.i386.rpm as root or use your
favorite RPM administration tool to install the RPM. Most files for Wing are placed under
the /usr/lib/wingide4.1 directory and the wing4.1 command is placed in the /usr/bin
directory.

Installing from Debian package:

Wing can be installed from a Debian package on Debian, Ubuntu, and other Debian-based
systems.

You will need to install enscript before installing Wing, if it’s not already on your system.
To install, run dpkg -i wingide4.1_4.1.13-1_1386.deb

as root or use your favorite package administration tool to install. Most files for Wing are
placed under the /usr/lib/wingide4.1 directory and the wing4.1 command is placed in
the /usr/bin directory.

Installing from Tar Archive:

Wing may also be installed from a tar archive. This can be used on systems that do
not use RPM or Debian packages, or if you wish to install Wing into a directory other
than /usr/1ib/wingide4.1. Unpacking this archive with tar -zxvf wingide-4.1.13-1-
i386-linux.tar.gz will create a wingide-4.1.13-1-i386-1inux directory that contains
the wing-install.py script and a binary-package.tar file.

Running the wing-install.py script will prompt for the location to install Wing, and
the location in which to place the executable wing4.1. These locations default to

24

/usr/local/lib/wingide and /usr/local/bin, respectively. The install program must
have read/write access to both of these directories, and all users running Wing must have
read access to both.

Using System-wide GTK:

By default, Wing IDE runs with its own copy of GTK2 and does not pick up on the
system-configured theme. This is done to avoid problems and bugs sometimes brought out
by binary incompatibilities in GTK versions.

On Linux versions that include GTK version 2.6 or later, you can tell Wing IDE to use
the system-defined GTK2 by setting the System GTK preference or running with the
--system-gtk command line argument.

Using the system-wide GTK2 in this way generally works quite well but may result in
crashing or display bugs due to binary incompatibilities in GTK and related libraries. If
you set the preference and Wing fails to start, specify the -—private-gtk command line
option to override the preference.

Non-ascii File Paths on Older Linux Systems:

Some older Linux versions require setting the environment variable
G_BROKEN_FILENAMES before Wing IDE’s file open/save dialog will work prop-
erly with file paths that contain non-ascii characters. The environment variable is already
set on some systems where it is needed but this is not always the case.

Debugging 32-bit Python on 64-bit Systems

On a 64-bit system where you need to debug 32-bit Python, you will need to install the
32-bit version of Wing. This version can also debug 64-bit Python.

Installing the 32-bit version of Wing may require installing some compatibility packages as
follows:

On 64-bit Ubuntu and Debian systems, you need to first install the 32 bit compati-
bility libraries. This is the ia32-1ibs package on Ubuntu. On Debian and Ubuntu
9+, the ia32-1ibs-gtk package is needed as well. Then install the 32-bit Wing with
the command dpkg -i --force-architecture --force-depends wingide4.1_4.1.13-
1_.1386.deb The package contains what you need to run your debug process with 64-bit
Python but Wing itself runs as a 32-bit application.

On CentOS 64-bit systems, installing the 1ibXtst.1386 and gtk2+386 packages with yum
provides the necessary 32 bit support.

On Arch linux, the necessary packages are instead named 1ib32-glibc and 1ib32-gtk?2.

25
1.12.2. Installing Extra Documentation

On Windows, Wing looks for local copies of Python documentation in the Doc directory of
the Python installation(s), either in CHM or HTML format.

If you are using Linux or OS X, the Python manual is not included in most Python
installations, so you may wish to download and install local copies.

To do this, place the top-level of the HTML formatted Python manual (where index.html
is found) into python-manual/#.# within your Wing IDE installation. Replace #.# with
the major and minor version of the corresponding Python interpreter (for example, for the
Python 2.7.x manual, use python-manual/2.7).

Once this is done, Wing will use the local disk copy rather than going to the web when the
Python Manual item is selected from the Help menu.

1.12.3. Source Code Installation

Source code is available to licensed users of Wing IDE Professional (non-evaluation licenses
only) who have completed a non-disclosure agreement. Upon receipt of this agreement, you
will be provided with instructions for obtaining and working with the product source code.

1.13. Removing Wing IDE

Windows

On Windows, use the Add/Remove Programs control panel, select Wing IDE 4 and remove
it.

Linux/Unix
To remove an RPM installation on Linux, type rpm -e wingide4.1.
To remove an Debian package installation on Linux, type dpkg -r wingide4.1.

To remove a tar archive installation on Linux/Unix, invoke the wing-uninstall script in
the Wing IDE installation directory. This will automatically remove all files that appear
not to have been changed since installation, It will ask whether it should remove any files
that appear to be changed.

Mac OS X

http://docs.python.org/download.html
http://wingware.com/pub/wingide/support/source-non-discl.pdf

26

To remove Wing from Mac OS X, just drag its application folder to the trash.

1.14. Command Line Usage

Whenever you run wing4.1 from the command line, you may specify a list of files to
open. These can be arbitrary text files and a project file. For example, the following will
open project file myproject.wpr and also the three source files mysource.py, README, and
Makefile:

wing4.1 mysource.py README Makefile myproject.wpr

(on Windows, the executable is called wing.exe)

Wing determines file type by extension, so position of the project file name (if any) on the
command line is not important. A line number may be specified for the first file on the
command line by appending :<line-number> to the file name (for example, README: 100
will position the cursor at the start of the README file).

The following valid options may be specified anywhere on the command line:

--prefs-file -- Add the file name following this argument to the list of preferences files
that are opened by the IDE. These files are opened after the system-wide and default user
preferences files, so values in them override those given in other preferences files.

--new -- By default Wing will reuse an existing running instance of Wing IDE to open
files specified on the command line. This option turns off this behavior and forces creation
of a new instance of Wing IDE. Note that a new instance is always created if no files are
given on the command line.

--reuse -- Force Wing to reuse an existing running instance of Wing IDE even if there are
no file names given on the command line. This just brings Wing to the front.

--system-gtk -- (Posiz only) This option causes Wing to try to use the system-wide install
of GTK2 rather than its own version of GTK, regardless of any preference setting. Running
in this mode will cause Wing to pick up on system-wide theme defaults, but may result in
crashing or display problems due to incompatibilities in GTK and related libraries.

--private-gtk -- (Posiz only) This option causes Wing to use its private copy of GTK2
and related libraries, regardless of any preference settings. Use of private GTK may result
in Wing not matching the system-wide theme, but also will avoid incompatibilities with
the system-wide GTK library.

27

--verbose -- (Posiz only) This option causes Wing to print verbose error reporting output
to stderr. On Windows, run console_wing.exe instead for the same result.

--display -- (Posiz only) Sets the X Windows display for Wing to run with. The display
specification should follow this argument, in standard format, e.g. myhost:0.0.

--use-sqlite-dotfile-locking -- (Posiz only) Use sqlite dotfile locking when opening
databases which are located under the ~/.cache directory or in the $XDG_CACHE_DIR.

--use-winghome -- (For developers only) This option sets WINGHOME to be used during
this run. It is used internally and by developers contributing to Wing IDE. The directory
to use follows this argument.

--use-src - (For developers only) This option is used to force Wing to run from Python
source files even if compiled files are present in the bin directory, as is the case after a
distribution has been built.

--orig-python-path - (For developers only) This option is used internally to indicate the
original Python path in use by the user before Wing was launched. The path follows this
argument.

--squelch-output - (For developers only) This option prevents any output of any kind
to stdout and stderr. Used on Windows to avoid console creation.

28

Customization

There are many ways to customize Wing IDE in order to adapt it to your needs or prefer-
ences. This chapter describes the options that are available to you.

These are some of the areas of customization that are available:

e The editor can run with different personalities such as VI/Vim, Emacs, Visual
Studio, Eclipse, and Brief emulation

e The action of the tab key can be configured

e The auto-completer’'s completion key(s) can be altered

e The layout, look, color, and content of the IDE windows can be configured

e Editor syntax colors can be configured

e Keyboard shortcuts can be added, removed, or altered for any Wing command
e File sets can be defined to control some of the IDE features

e Code snippets can be defined and bound to keys

e Perspectives can be used to save and restore user interface state

e Scripts can be written in Python to extend the IDE's functionality

e Many other options are available through preferences

29

30

2.1. Keyboard Personalities

The default keyboard personality for Wing implements most common keyboard equivalents
found in a simple graphical text editor. This uses primarily the graphical user interface for
interacting with the editor and limits use of complex keyboard-driven command interaction.

Emulation of Other Editors

The first thing any Vim, Emacs, Visual Studio, Eclipse, or Brief user will want to
do is to set the keyboard personality to emulate their editor of choice. This is done
with the Keyboard Personality item in the Edit menu or with the Keyboard >
Personality preference.

Under the Vim and Emacs personalities, key strokes can be used to control most of the
editor’s functionality, using a textual interaction 'mini-buffer’ at the bottom of the IDE
window where the current line number and other informational messages are normally
displayed.

Related preferences that alter keyboard behaviors include Tab Key Action and Com-
pletion Keys for the auto-completer.

It is also possible to add, alter, or remove individual keyboard command mappings within
each of these personalities. See the following sub-sections for details.

2.1.1. Key Equivalents

The command a key will invoke may be modified by specifying a custom key binding. A
custom key binding will override any binding for a particular key found in the keymap.
Custom key bindings are set via the Custom Key Bindings preference.

To add a binding, click the insert button, then press the key to be bound in the Key
field, and enter the name of the command to invoke in the Command field. Commands are
documented in the Command Reference.

Key bindings may consist of multiple key strokes in a row, such as Ctrl-X Ctrl-U or Esc
XY Z

If multiple comma-separated commands are specified, the key binding will execute the
first available command in the listed. For example, specifying debug-restart, debug-
continue as the command will first try to restart an existing debug session, and if no
debug session exists it will start a new one.

31

To disable a key binding, leave the command field blank.

Some commands take arguments, which can be specified in the binding, for example by
using show-panel (panel_type="debug-probe") or enclose(start="(", end=")")‘‘in
the ¢ ‘Command field. Any unspecified arguments that do not have a default defined by
the command will be collected from the user, either in a dialog or in the data entry area
at the bottom of the IDE window.

Key bindings defined by default or overridden by this preference will be shown in any menu
items that implement the same command. In cases where a command is given more than
one key equivalent, only the last equivalent found will be displayed (although both bindings
will work from the keyboard).

2.1.2. Key Maps

Wing ships with several key equivalency maps found at the top level of the Wing IDE instal-
lation, including keymap.normal, keymap.emacs, keymap.vi, and others. These are used
as default key maps for the corresponding editor personalities, as set with the Keyboard
Personality preference.

For developing entirely new key bindings, or in other cases where the Custom Key Bind-
ings preference is not sufficient, it is possible to create a custom key equivalency map and
use it as your default map through the Key Map File preference.

In a key map file, each key equivalent is built from names listed in the Key Names section.
These names can be combined as follows:

1) A single unmodified key is specified by its name alone, for example
’Down’ for the down arrow key.

2) Modified keys are specified by hyphenating the key names, for exam-
ple Shift-Down’ for the down arrow key pushed while shift is held
down. Multiple modifiers may also be specified, as in ’Ctrl-Shift-
Down’.

3) Special modifiers are defined for Vim mode: Visual, Browse, Insert,
and Replace. These correspond with the different editor modes, and
will only work if the Keyboard Personality preference has been set to
VI/Vim.

4) Multi-key combinations can be specified by listing multiple key names
separated by a space. For example, to define a key equivalent that
consists of first pushing ctrl-x and then pushing the a key by itself,
use ’ctrl-x a’ as the key sequence.

32

The command portion of the key equivalency definition may be any of the commands listed
in section Command Reference. See the examples below for usage options.

Examples

Here is an example of adding a key binding for a command. If the command already has
a default key binding, both bindings will work:

’Ctrl-X P’: ’debug-attach’
This example removes a key equivalent entirely:
’Ctrl-C Ctrl-C’: None

These can be combined to changes the key binding for a command without retaining its
default key binding:

’Ctrl-C Ctrl-C’: None
’Ctrl-G’: ’debug-continue’

Wing always retains only the last key binding for a given key combination. This example
binds Ctrl-X to 'quit’ and no other command:

’Ctrl-X’: ’debug-stop’
’Ctrl-X’: ’quit’

If multiple commands are specified separated by commas, Wing executes the first command
that is available. For example, the following will either restart the debug process whether
or not one is currently running:

’Ctrl-X’: ’debug-restart, debug-continue’
Command arguments can be specified as part of the binding. Any unspecified arguments
that do not have a default will be collected from the user in a dialog or in the data entry
area at the bottom of the IDE window:

’Ctrl-X P’: ’show-panel (panel_type="debug-probe")’

If Keyboard Personality is set to VI/Vim, modifiers corresponding to the editor modes
restrict availability of the binding to only that mode:

’Visual-Ctrl-X’: ’cut’

33

2.1.3. Key Names

Key modifiers supported by Wing IDE for key bindings are:

e Ctrl -- Either Control key.

e Shift -- Either Shift key. This modifier is ignored with some key names, as indicated
below.

e Alt - Either Alt key. Not recommended for general use since these bindings tend to
conflict with menu accelerators and operating system or window manager operations.

e Command -- Macintosh Command/Apple key. This may be mapped to other keys
on other systems, but is intended for use on the Macintosh.

On Linux and OS X it is possible to remap the function of the Control, Alt, command, and
windows keys. In those cases, the Ctrl and Alt modifiers will refer to the keys specified in
that mapping.

Basic Keys such as the digit keys and core western alphabet keys are specified as follows:
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Most punctuation can be specified but any Shift modifier will be ignored since these keys
can vary in location on different international keyboards. Allowed punctuation includes:

c~!@#$%A&*(>___’_:[}{}\|;:744/?'>’<
Special Keys can also be used:

Escape, Space, BackSpace, Tab, Linefeed, Clear, Return, Pause, Scroll_Lock, Sys_Req,
Delete, Home, Left, Up, Right, Down, Prior, Page_Up, Next, Page_Down, End, Begin,
Select, Print, Execute, Insert, Undo, Redo, Menu, Find, Cancel, Help, Break, Mode_switch,
script_switch, Num_Lock,

F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, L1, F12, L2, F13, L3, F14, L4, F15, L5,
F16, L6, F17, L7, F18, L8, F19, L9, F20, 10, F21, R1, F22, R2, F23, R3, F24, R4, F25,
R5, F26, R6, F27, R7, F28, RS, F29, R9, F30, R10, F31, R11, F32, R12, F33, R13, F34,
R14, F35, R15,

Mouse Buttons are also named for key bindings:

Pointer_Left, Pointer_Right, Pointer_Up, Pointer_Down, Pointer_UpLeft,
Pointer_UpRight, Pointer_DownLeft, Pointer_DownRight, Pointer_Button_Dflt,

34

Pointer_Buttonl, Pointer_Button2, Pointer_Button3, Pointer_Button4, Pointer_Buttonb,
Pointer_DblClick_Dflt, Pointer_DblClickl, = Pointer_DblClick2, Pointer_DblClick3,
Pointer_DblClick4, Pointer_DblClick5, Pointer_Drag_DAflt, Pointer_Dragl,
Pointer_Drag2, Pointer_Drag3, Pointer_Dragd, Pointer_EnableKeys, Pointer_Accelerate,
Pointer_DfltBtnNext, Pointer_DfltBtnPrev,

Keypad Keys are specified like this:

KP_Left, KP_Right, KP_Up, KP_Down, KP_Home, KP_Page Up, KP_Page Down,
KP_End, KP_Insert, KP_Delete, KP_0, KP_1, KP_2, KP_3, KP_4, KP_5, KP_6, KP_7,
KP_8, KP_9,

Additional Key Names that also work but ignore the Shift modifier since they tend to
appear in different locations on international keyboards:

KP_Space, KP_Tab, KP_Enter, KP_F1, KP_F2, KP_F3, KP_F4, KP_Prior, KP_Next,
KP_Begin, KP_Insert, KP_Delete, KP_Equal, KP_Multiply, KP_Add, KP_Separator,
KP_Subtract, KP_Decimal, KP_Divide,

exclam, quotedbl, numbersign, dollar, percent, ampersand, apostrophe, quoteright, paren-
left, parenright, asterisk, plus, comma, minus, period, slash, colon, semicolon, less, equal,
greater, question, at, bracketleft, backslash, bracketright, asciicircum, underscore, grave,
quoteleft, braceleft, bar, braceright,

EuroSign, EcuSign, ColonSign, CruzeiroSign, FFrancSign, LiraSign, MillSign, NairaSign,
PesetaSign, RupeeSign, WonSign, NewSheqelSign, DongSign,

Special Character Names are available for use with key bindings on international or
special purpose keyboards:

asciitilde, nobreakspace, exclamdown, cent, sterling, currency, yen, brokenbar, section, di-
aeresis, copyright, ordfeminine, guillemotleft, notsign, hyphen, registered, macron, degree,
plusminus, twosuperior, threesuperior, acute, mu, paragraph, periodcentered, cedilla, one-
superior, masculine, guillemotright, onequarter, onehalf, threequarters, questiondown,

leftradical, topleftradical, horizconnector, topintegral, botintegral, vertconnector, topleft-
sgbracket, botleftsqbracket, toprightsqbracket, botrightsqbracket, topleftparens, botleft-
parens, toprightparens, botrightparens, leftmiddlecurlybrace, rightmiddlecurlybrace,
topleftsummation, botleftsummation, topvertsummationconnector, botvertsummationcon-
nector, toprightsummation, botrightsummation, rightmiddlesummation, lessthanequal,
notequal, greaterthanequal, integral, therefore, variation, infinity, nabla, approximate,
similarequal, ifonlyif, implies, identical, radical, includedin, includes, intersection, union,
logicaland, logicalor, partialderivative, function, leftarrow, uparrow, rightarrow, downar-
row, blank, soliddiamond, checkerboard, ht, ff, cr, If, nl, vt, lowrightcorner, upright-

35

corner, upleftcorner, lowleftcorner, crossinglines, horizlinescanl, horizlinescan3, horizli-
nescand, horizlinescan7, horizlinescan9, leftt, rightt, bott, topt, vertbar, emspace, en-
space, em3space, em4space, digitspace, punctspace, thinspace, hairspace, emdash, endash,
signifblank, ellipsis, doubbaselinedot, onethird, twothirds, onefifth, twofifths, threefifths,
fourfifths, onesixth, fivesixths, careof, figdash, leftanglebracket, decimalpoint, rightan-
glebracket, marker, oneeighth, threeeighths, fiveeighths, seveneighths, trademark, signa-
turemark, trademarkincircle, leftopentriangle, rightopentriangle, emopencircle, emopen-
rectangle, leftsinglequotemark, rightsinglequotemark, leftdoublequotemark, rightdouble-
quotemark, prescription, minutes, seconds, latincross, hexagram, filledrectbullet, filledleft-
tribullet, filledrighttribullet, emfilledcircle, emfilledrect, enopencircbullet, enopensquare-
bullet, openrectbullet, opentribulletup, opentribulletdown, openstar, enfilledcircbullet, en-
filledsgbullet, filledtribulletup, filledtribulletdown, leftpointer, rightpointer, club, diamond,
heart, maltesecross, dagger, doubledagger, checkmark, ballotcross, musicalsharp, musi-
calflat, malesymbol, femalesymbol, telephone, telephonerecorder, phonographcopyright,
caret, singlelowquotemark, doublelowquotemark, cursor, leftcaret, rightcaret, downcaret,
upcaret, overbar, downtack, upshoe, downstile, underbar, jot, quad, uptack, circle, upstile,
downshoe, rightshoe, leftshoe, lefttack, righttack,

Multi_key, Codeinput, SingleCandidate, MultipleCandidate, PreviousCandidate, Kanji,
Muhenkan, Henkan_Mode, Henkan, Romaji, Hiragana, Katakana, Hiragana_Katakana,
Zenkaku, Hankaku, Zenkaku Hankaku, Touroku, Massyo, Kana_Lock, Kana_Shift,
Eisu_Shift, Eisu_toggle, Kanji_Bangou, Zen_Koho, Mae_Koho,

ISO_Lock, ISO_Level2_Latch, ISO_Level3_Shift, ISO_Level3_Latch, ISO_Level3_Lock,
ISO_Group_Shift, ISO_Group_Latch, I[SO_Group_Lock, ISO_Next_Group,
ISO_Next_Group_Lock, ISO_Prev_Group, ISO_Prev_Group_Lock, ISO_First_Group,
ISO_First_Group_Lock, ISO_Last_Group, ISO_Last_Group_Lock, ISO_Left_Tab,
ISO_Move_Line_Up, ISO_Move_Line_Down, ISO_Partial_Line_Up, ISO_Partial_Line_Down,

ISO_Partial_Space_Left, I[SO_Partial_Space_Right, ISO_Set_Margin_Left,
[SO_Set_Margin_Right, [SO_Release_Margin_Left, ISO_Release_Margin_Right,
ISO_Release_Both_Margins, ISO_Fast_Cursor_Left, [SO_Fast_Cursor_Right,
ISO_Fast_Cursor_Up, ISO_Fast_Cursor_Down, ISO_Continuous_Underline,

ISO_Discontinuous_Underline, ISO_Emphasize, [SO_Center_Object, ISO_Enter

dead_grave, dead_acute, dead_circumflex, dead_tilde, dead_macron, dead_breve,
dead_abovedot, dead_diaeresis, dead_abovering, dead_doubleacute, dead_caron,
dead_cedilla, dead_ogonek, dead_iota, dead_voiced_sound, dead_semivoiced_sound,

dead_belowdot,

First_Virtual_Screen, Prev_Virtual_Screen, Next_Virtual_Screen, Last_Virtual Screen,
Terminate_Server, AccessX_Enable, AccessX_Feedback_Enable, RepeatKeys_Enable,
SlowKeys_Enable, BounceKeys_Enable, StickyKeys_Enable, = MouseKeys_Enable,

36

MouseKeys_Accel_Enable, Overlayl_Enable, Overlay2_Enable, AudibleBell_Enable,
Pointer_Left, Pointer_Right, Pointer_Up,

_3270_Duplicate, _3270_FieldMark, _3270_Right2, 3270_Left2, _3270_BackTab,
_3270_EraseEOF, _3270_Eraselnput, 3270_Reset, _3270_Quit, _3270_PA1, _3270_PA2,
_3270_PA3, _3270_Test, 3270_Attn, _3270_CursorBlink, __3270_AltCursor, _3270_KeyClick,
3270_Jump, _3270_Ident, _3270_Rule, _3270_Copy, _3270_Play, _3270_Setup,
3270_Record, _3270_ChangeScreen, _3270_DeleteWord, _3270_ExSelect, 3270_CursorS-
elect, _3270_PrintScreen, __3270_Enter,

Agrave, Aacute, Acircumflex, Atilde, Adiaeresis, Aring, AE, Ccedilla, Egrave, Eacute,
Ecircumflex, Ediaeresis, Igrave, lacute, Icircumflex, Idiaeresis, ETH, Eth, Ntilde, Ograve,
Oacute, Ocircumflex, Otilde, Odiaeresis, multiply, Ooblique, Ugrave, Uacute, Ucircum-
flex, Udiaeresis, Yacute, THORN, Thorn, ssharp, agrave, aacute, acircumflex, atilde,
adiaeresis, aring, ae, ccedilla, egrave, eacute, ecircumflex, ediaeresis, igrave, iacute, icir-
cumflex, idiaeresis, eth, ntilde, ograve, oacute, ocircumflex, otilde, odiaeresis, division,
oslash, ugrave, uacute, ucircumflex, udiaeresis, yacute, thorn, ydiaeresis, Aogonek, breve,
Lstroke, Lcaron, Sacute, Scaron, Scedilla, Tcaron, Zacute, Zcaron, Zabovedot, aogonek,
ogonek, Istroke, lcaron, sacute, caron, scaron, scedilla, tcaron, zacute, doubleacute, zcaron,
zabovedot, Racute, Abreve, Lacute, Cacute, Ccaron, Eogonek, Ecaron, Dcaron, Dstroke,
Nacute, Ncaron, Odoubleacute, Rcaron, Uring, Udoubleacute, Tcedilla, racute, abreve,
lacute, cacute, ccaron, eogonek, ecaron, dcaron, dstroke, nacute, ncaron, odoubleacute,
udoubleacute, rcaron, uring, tcedilla, abovedot, Hstroke, Hcircumflex, Iabovedot, Gbreve,
Jcircumflex, hstroke, hcircumflex, idotless, gbreve, jcircumflex, Cabovedot, Ccircumflex,
Gabovedot, Gceircumflex, Ubreve, Scircumflex, cabovedot, ccircumflex, gabovedot, gcir-
cumflex, ubreve, scircumflex, kra, kappa, Rcedilla, Itilde, Lcedilla, Emacron, Geedilla,
Tslash, rcedilla, itilde, lcedilla, emacron, gcedilla, tslash, ENG, eng, Amacron, Iogonek,
Eabovedot, Imacron, Ncedilla, Omacron, Kcedilla, Uogonek, Utilde, Umacron, amacron,
iogonek, eabovedot, imacron, ncedilla, omacron, kcedilla, uogonek, utilde, umacron, OE,
oe, Ydiaeresis, overline,

kana_fullstop, kana_openingbracket, kana_closingbracket, kana_comma, kana_conjunctive,
kana_middledot, kana_WO, kana_a, kana_i, kana_u, kana_e, kana_o, kana_ya, kana_yu,
kana_yo, kana_tsu, kana_tu, prolongedsound, kana_A, kana_I, kana_U, kana_E, kana_O,
kana KA, kana_KI, kana_KU, kana_KE, kana_KO, kana_SA, kana_SHI, kana_SU, kana_SE,
kana_SO, kana_TA, kana_CHI, kana_TI, kana TSU, kana TU, kana TE, kana_TO,
kana_NA, kana_NI, kana_NU, kana_NE, kana_NO, kana_HA, kana_HI, kana_FU, kana_HU,
kana_HE, kana HO, kana_MA, kana MI, kana_ MU, kana ME, kana_MO, kana_YA,
kana_YU, kana_YO, kana_RA, kana_RI, kana_RU, kana_RE, kana_RO, kana_WA, kana_N,
voicedsound, semivoicedsound, kana_switch,

Arabic_comma, Arabic_semicolon, Arabic_question_mark, Arabic_hamza, Ara-
bic_maddaonalef, Arabic_hamzaonalef, Arabic_hamzaonwaw, Arabic_hamzaunderalef,

37

Arabic_hamzaonyeh, Arabic_alef, Arabic_beh, Arabic_tehmarbuta, Arabic_teh, Ara-
bic_theh, Arabic_jeem, Arabic_hah, Arabic_khah, Arabic_dal, Arabic_thal, Arabic_ra,
Arabic_zain, Arabic_seen, Arabic_sheen, Arabic_sad, Arabic_dad, Arabic_tah, Arabic_zah,
Arabic_ain, Arabic_ghain, Arabic_tatweel, Arabic_feh, Arabic_qaf, Arabic_kaf, Arabic_lam,
Arabic_meem, Arabic_noon, Arabic_ha, Arabic_heh, Arabic_waw, Arabic_alefmaksura,
Arabic_yeh, Arabic_fathatan, Arabic_.dammatan, Arabic_kasratan, Arabic_fatha, Ara-
bic_damma, Arabic_kasra, Arabic_shadda, Arabic_sukun, Arabic_switch,

Serbian_dje, = Macedonia_gje, Cyrillic_io, = Ukrainian_ie, = Ukranian_je, = Macedo-
nia_dse, Ukrainian_i, Ukranian_i, Ukrainian_yi, Ukranian_yi, Cyrillic_je, Serbian_je,
Cyrillic_lje, Serbian_lje, Cyrillic_nje, Serbian_nje, Serbian_tshe, Macedonia_kje,
Ukrainian_ghe_with_upturn, Byelorussian_shortu, Cyrillic_dzhe, Serbian_dze, numerosign,
Serbian_DJE, Macedonia_GJE, Cyrillic_IO, Ukrainian_IE, Ukranian_JE, Macedonia_DSE,
Ukrainian_I, Ukranian_I, Ukrainian_YI, Ukranian_YI, Cyrillic_JE, Serbian_JE, Cyril-
lic_.LJE, Serbian_LJE, Cyrillic.NJE, Serbian NJE, Serbian_ TSHE, Macedonia KJE,
Ukrainian GHE_WITH_UPTURN, Byelorussian SHORTU, Cyrillic. DZHE, Serbian_DZE,
Cyrillic_yu, Cyrillic_a, Cyrillic_be, Cyrillic_tse, Cyrillic_de, Cyrillic_ie, Cyrillic_ef, Cyril-
lic_ghe, Cyrillic_ha, Cyrillic_i, Cyrillic_shorti, Cyrillic_ka, Cyrillic_el, Cyrillic_em, Cyril-
lic_en, Cyrillic_o, Cyrillic_pe, Cyrillic_ya, Cyrillic_er, Cyrillic_es, Cyrillic_te, Cyrillic_u,
Cyrillic_zhe, Cyrillic_ve, Cyrillic_softsign, Cyrillic_yeru, Cyrillic_ze, Cyrillic_sha, Cyril-
lic_e, Cyrillic_shcha, Cyrillic_che, Cyrillic_hardsign, Cyrillic_.YU, Cyrillic_A, Cyrillic_BE,
Cyrillic_TSE, Cyrillic.DE, Cyrillic_IE, Cyrillic.EF, Cyrillic.GHE, CyrilliccHA, Cyril-
lic_I, Cyrillic.SHORTI, Cyrillic. KA, Cyrillic_EL, CyrilliccEM, Cyrillic_ZEN, Cyrillic_O,
Cyrillic_PE, Cyrillic_.YA, Cyrillic_ZER, Cyrillic_ES, Cyrillic_TE, Cyrillic_U, Cyrillic_ZZHE,
Cyrillic_VE, Cyrillic.SOFTSIGN, Cyrillic . YERU, Cyrillic_ZZE, Cyrillic_.SHA, Cyrillic_E,
Cyrillic_.SHCHA, Cyrillic.CHE, Cyrillic. HARDSIGN,

Greek_ALPHAaccent, Greek EPSILONaccent, Greek_ETAaccent, Greek IOTAaccent,

Greek_10TAdiaeresis, Greek_ OMICRONaccent, Greek_UPSILONaccent,
Greek_UPSILONdieresis, Greek OMEGAaccent, Greek_accentdieresis, Greek_horizbar,
Greek_alphaaccent, Greek_epsilonaccent, Greek_etaaccent, Greek_iotaaccent,

Greek_iotadieresis, Greek_iotaaccentdieresis, Greek_omicronaccent, Greek_upsilonaccent,
Greek_upsilondieresis, Greek_upsilonaccentdieresis, Greek_omegaaccent, Greek ALPHA,
Greek BETA, Greek GAMMA, Greek DELTA, Greek EPSILON, Greek ZETA,
Greek_ETA, Greek THETA, Greek _10TA, Greek_ KAPPA, Greek_ LAMDA,
Greek LAMBDA, Greek MU, Greek NU, Greek XI, Greek OMICRON, Greek PI,
Greek_RHO, Greek_ SIGMA, Greek_TAU, Greek UPSILON, Greek_ PHI, Greek_CHI,
Greek_PSI, Greek OMEGA, Greek_alpha, Greek beta, Greek_gamma, Greek delta,
Greek_epsilon, Greek zeta, Greek eta, Greek theta, Greek_ iota, Greek kappa,
Greek_lamda, Greek_lambda, Greek_mu, Greek nu, Greek xi, Greek_omicron, Greek pi,
Greek_rho, Greek_sigma, Greek finalsmallsigma, Greek tau, Greek_upsilon, Greek_phi,
Greek_chi, Greek_psi, Greek_omega, Greek_switch,

38

hebrew_doublelowline, hebrew_aleph, hebrew_bet, hebrew_beth, hebrew_gimel, he-
brew_gimmel, hebrew_dalet, hebrew_daleth, hebrew_he, hebrew_waw, hebrew_zain,
hebrew_zayin, hebrew_chet, hebrew_het, hebrew_tet, hebrew_teth, hebrew_yod, he-
brew_finalkaph, hebrew_kaph, hebrew_lamed, hebrew_finalmem, hebrew_mem, he-
brew_finalnun, hebrew_nun, hebrew_samech, hebrew_samekh, hebrew_ayin, he-
brew_finalpe, hebrew_pe, hebrew_finalzade, hebrew_finalzadi, hebrew_zade, hebrew_zadi,
hebrew_qoph, hebrew_kuf, hebrew_resh, hebrew_shin, hebrew_taw, hebrew_taf, He-
brew_switch,

Thai_kokai, Thai_khokhai, Thai_khokhuat, Thai_khokhwai, Thai_khokhon,
Thai_khorakhang, Thai_ngongu, Thai_chochan, Thai_choching, Thai_chochang,
Thai_soso, Thai_chochoe, Thai yoying, Thai_dochada, Thai topatak, Thai_thothan,
Thai_thonangmontho, Thai_thophuthao, = Thai_nonen, Thai_dodek, Thai_totao,
Thai_thothung, Thai_thothahan, Thai_thothong, Thai_nonu, Thai_bobaimai, Thai_popla,
Thai_phophung, Thai_fofa, Thai_phophan, Thai_fofan, Thai_phosamphao, Thai_moma,
Thai_yoyak, Thai_rorua, Thai_ru, Thai_loling, Thai_lu, Thai_wowaen, Thai_sosala,
Thai_sorusi, Thai_sosua, Thai_hohip, Thai_lochula, Thaioang, Thai_honokhuk,
Thai_paiyannoi, Thai_saraa, Thai_maihanakat, Thai_saraaa, Thai_saraam, Thai_sarai,
Thai_saraii, Thai_saraue, Thai_sarauee, Thai sarau, Thai sarauu, Thai_phinthu,

Thai_maihanakat_maitho, Thai_baht, Thai_sarae, Thai_saraae, Thai_sarao,
Thai_saraaimaimuan, Thai saraaimaimalai, = Thai_lakkhangyao, Thai_maiyamok,
Thai_maitaikhu, Thai_maiek, Thai_maitho, Thai_maitri, Thai_maichattawa,

Thai_thanthakhat, Thai_nikhahit, Thai_leksun, Thai_leknung, Thai_leksong, Thai_leksam,
Thai_leksi, Thai_lekha, Thai_lekhok, Thai_lekchet, Thai_lekpaet, Thai_lekkao,

Hangul, Hangul Start, Hangul End, Hangul Hanja, Hangul Jamo, Hangul Romaja,
Hangul_Codeinput, Hangul_Jeonja, Hangul_Banja, Hangul_PreHanja, Hangul_PostHanja,
Hangul_SingleCandidate, Hangul_MultipleCandidate, Hangul_PreviousCandidate,
Hangul _Special, Hangul_switch, Hangul_Kiyeog, Hangul_SsangKiyeog, Hangul_KiyeogSios,
Hangul Nieun, Hangul NieunlJieuj, Hangul NieunHieuh, Hangul _Dikeud,
Hangul _SsangDikeud, Hangul Rieul, Hangul_RieulKiyeog, Hangul RieulMieum,
Hangul_RieulPieub, Hangul_RieulSios, Hangul_RieulTieut, Hangul_RieulPhieuf,
Hangul_RieulHieuh, Hangul_Mieum, Hangul_Pieub, Hangul_SsangPieub,
Hangul PieubSios, Hangul Sios, Hangul SsangSios, Hangul leung, Hangul _Jieuj,
Hangul SsanglJieuj, Hangul Cieuc, Hangul Khieuq, Hangul Tieut, Hangul Phieuf,
Hangul_Hieuh, Hangul_ A, Hangul_AE, Hangul YA, Hangul_YAE, Hangul EO, Hangul_E,
Hangul_ YEO, Hangul.YE, Hangul.O, Hangul. WA, Hangul. WAE, Hangul OE,
Hangul YO, Hangul U, Hangul WEO, Hangul WE, Hangul WI, Hangul_YU, Hangul EU,
Hangul YI, Hangul I, Hangul J_Kiyeog, Hangul _J_SsangKiyeog, Hangul J_KiyeogSios,
Hangul J_Nieun, Hangul_J_NieunlJieuj, = Hangul_J_NieunHieuh, = Hangul J_Dikeud,
Hangul J_Rieul, Hangul J_RieulKiyeog, Hangul J_RieulMieum, Hangul J_RieulPieub,
Hangul_J_RieulSios, Hangul_J_RieulTieut, Hangul_J_RieulPhieuf, Hangul_J_RieulHieuh,

39

Hangul J_Mieum, Hangul_J_Pieub, Hangul_J_PieubSios, Hangul_J_Sios,
Hangul_J_SsangSios, Hangul_J_leung, Hangul_J_Jieuj, Hangul_J_Cieuc, Hangul_J_Khieuq,
Hangul_J_Tieut, Hangul_J_Phieuf, Hangul_J_Hieuh, Hangul_Rieul YeorinHieuh,
Hangul_SunkyeongeumMieum, Hangul_SunkyeongeumPieub, Hangul_PanSios,
Hangul KkogjiDalrinleung, Hangul_SunkyeongeumPhieuf, Hangul_YeorinHieuh,
Hangul_AraeA, Hangul AraeAE, Hangul J_PanSios, Hangul J_KkogjiDalrinleung,
Hangul_J_YeorinHieuh, Korean_Won,

Armenian_eternity, Armenian_section_sign, Armenian_full_stop, Armenian_verjaket,
Armenian_parenright, Armenian_parenleft, Armenian_guillemotright, Arme-
nian_guillemotleft, ~Armenian_em_dash, Armenian_dot, Armenian_mijaket, Arme-
nian_separation_mark, Armenian_but, Armenian_comma, Armenian_en_dash, Ar-
menian_hyphen, Armenian_yentamna, Armenian_ellipsis, Armenian_exclam, Arme-
nian_amanak, Armenian_accent, Armenian_shesht, Armenian_question, Armenian_paruyk,
Armenian_AYB, Armenian_ayb, Armenian_BEN, Armenian_ben, Armenian_GIM, Arme-
nian_gim, Armenian_DA, Armenian_da, Armenian_YECH, Armenian_yech, Armenian_ZA,
Armenian_za, Armenian_E, Armenian_e, Armenian_AT, Armenian_at, Armenian_TO,
Armenian_to, Armenian_ZHE, Armenian_zhe, Armenian_INI, Armenian_ini, Arme-
nian_LYUN, Armenian_lyun, Armenian KHE, Armenian_khe, Armenian_TSA, Arme-
nian_tsa, Armenian_KEN, Armenian_ken, Armenian_HO, Armenian_ho, Armenian_DZA,
Armenian_dza, Armenian_GHAT, Armenian_ghat, Armenian_ TCHE, Armenian_tche, Ar-
menian_MEN, Armenian_men, Armenian_HI, Armenian_hi, Armenian_NU, Armenian_nu,
Armenian_SHA, Armenian_sha, Armenian_VO, Armenian_vo, Armenian_ CHA, Arme-
nian_cha, Armenian_PE, Armenian_pe, Armenian_JE, Armenian_je, Armenian_RA, Arme-
nian_ra, Armenian_SE, Armenian_se, Armenian_VEV, Armenian_vev, Armenian_TYUN,
Armenian_tyun, Armenian_RE, Armenian_re, Armenian_TSO, Armenian_tso, Arme-
nian_VYUN, Armenian_vyun, Armenian_ PYUR, Armenian_pyur, Armenian_ KE, Arme-
nian_ke, Armenian_O, Armenian_o, Armenian FE, Armenian_fe, Armenian_apostrophe,
Armenian_ligature_ew,

Georgian_an, Georgian_ban, Georgian_gan, Georgian_don, Georgian_en, Georgian_vin,
Georgian_zen, Georgian_tan, Georgian_in, Georgian_kan, Georgian_las, Georgian_man,
Georgian_nar, Georgian_on, Georgian_par, Georgian_zhar, Georgian_rae, Georgian_san,
Georgian_tar, Georgian_un, Georgian_phar, Georgian_khar, Georgian_ghan, Georgian_qar,
Georgian_shin, Georgian_chin, Georgian_can, Georgian_jil, Georgian_cil, Georgian_char,
Georgian_xan, Georgian_jhan, Georgian_hae, Georgian_he, Georgian_hie, Georgian_we,
Georgian_har, Georgian_hoe, Georgian_fi,

40

2.2. User Interface Options

Wing provides many options for customizing the user interface to your needs. Preferences
can be set to control the number and type of windows, layout of tools and editors, text
fonts and colors, type of toolbar, and the overall display style or "theme* (including white
on black and many others).

2.2.1. Windowing Policies

Wing IDE can run in a variety of windowing modes. This is controlled by the Windowing
Policy preference, which provides the following options:

e Combined Tool Box and Editor Windows -- This is the default, in which Wing
opens a single window that combines the editor area with two tool box panels.

e Separate Tool Box Windows -- In this mode, Wing IDE moves all the tools out
to a separate shared window.

e One Window Per Editor -- In this mode, Wing IDE creates one top-level window
for each editor that is opened. Additionally, all tools are moved out to a separate
shared tool box window and the toolbar and menu are moved out to a shared tool-
bar/menu window.

The windowing policy is used to describe the initial configuration and basic action of
windows in the IDE. When it is changed, Wing will reconfigure your projects to match the
windowing policy the first time they are used with the new setting.

However, it is possible to create additional IDE windows and to move editors and tools
out to another window or among existing windows without changing from the default
windowing policy. This is described below.

2.2.2. User Interface Layout

When working in the default windowing policy, Wing’s main user interface area consists
of two tool boxes (by default at bottom and right) and an area for source editors and
integrated help.

Clicking on an already-active notebook tab will cause Wing to minimize the entire panel
so that only the notebook tabs are visible. Clicking again will return the tool box to its

41

former size. The F1 and F2 keys toggle between these modes. The command Maximize
Editor Area in the Tools menu (Shift-F2) can also be used to quickly hide both tool areas
and toolbar.

In other windowing modes, the tool boxes and editor area are presented in separate windows
but share many of the configuration options described below.

Configuring the Toolbar

Wing’s toolbar can be configured by altering the size and style of the toolbar icons in
the toolbar, and whether or not text is shown in addition to or instead of icons. This is
controlled with the Toolbar Icon Size and Toolbar Icon Style preferences.

Alternatively, the toolbar can be hidden completely with the Show Toolbar preference.
Configuring the Editor Area

The options drop down menu in the top right of the editor area allows for splitting and
joining the editor into multiple independent panels. These can be arranged horizontally,
vertically, or any combination thereof. When multiple splits are shown, all the open files
within the window are available within each split, allowing work on any combination of
files and/or different parts of the same file.

The options drop down menu can also be used to change between tabbed editors and editors
that show a popup menu for selecting among files (the latter can be easier to manage with
large number of files) and to move editors out to a separate window or among existing
windows when multiple windows are open.

Configuring Tool Boxes

Each of the tool boxes can be also be split or joined into any number of sub-panels along
the long axis of the notebook by clicking on the options drop down icon in the tab area of
the notebooks (right-clicking also works). The number of tool box splits Wing shows by
default depends on your monitor size.

The options drop down menu can also be used to duplicate tools, or move them around
among the splits or out to separate windows.

The size of each panel and the panel splits can also be altered by dragging on the dividers
between them.

All available tools are enumerated in the Tools menu, which will display the most recently
used tool of that type or will add one to your window at its default location, if none is
already present.

42

Creating Additional Windows

In addition to moving existing editors or tools to new windows, it is also possible to create
new tool windows (initially with a single tool) and new document windows (with editor
and toolbars if applicable to the selected windowing policy) from the Windows menu.

Wing IDE will remember the state of windows as part of your project file, so the same
window layout and contents will be restored in subsequent work sessions.

2.2.3. Altering Text Display

Wing tries to find display fonts appropriate for each system on which it runs, but many users
will want to customize the font style and size used in the editor and other user interface
areas. This can be done with the Source Code Font/Size and Display Font/Size
preferences.

The color of text for some file types in the editor can be controlled with the Syntax
Formatting preference.

Note that when the Source Code Background preference is set to a color other than
white, Wing will compute appropriately visible colors for text according to the chosen
background color.

The color used for text selection can also be controlled with the Text Selection Color
preference.

Changes in color preferences will often depend on the overall display theme that is chosen,
as described in the next section.

2.2.4. Setting Overall Display Theme

Wing is based on GTK2, a cross-platform user interface toolkit that provides customizable
themes, which control the overall look and feel of the user interface. Wing’s default theme
varies by platform (a Windows emulation theme is used on Windows, and an OS X like
theme on OS X) and can be changed with the Display Theme preference.

In most cases, the new theme will instantly be applied to Wing’s user interface. When
switching back to default settings, a restart may be needed in some cases, as indicated by
message dialog.

Some systems with slower graphics cards may not run as well using the more colorful 3D

43

rendered themes. In this case, using the Gtk Default theme is the best option, as it
involves no extra graphics-level processing.

System GTK on Linux

On Linux systems with GTK 2.6 or later installed, it is possible to run Wing with the
system-wide GTK installation and system-defined themes. This is controlled with the
Use System GTK preference or the —-system-gtk or ——private-gtk command line
arguments. Wing works reasonably well with most 2.6.x GTK2 releases, but there still
may be problems resulting from version differences. If you have any problems with Wing’s
stability or are seeing display glitches, you should use the private gtk option.

2.3. Preferences

Wing has many preferences that control features of the editor, unit tester, debugger, source
browser, project manager, and other tools.

To alter these, use the Preferences item in the Edit menu. This organizes all available
preferences by category and provides access to documentation in tooltips that are displayed
when mousing over the label area to the left of each preference. Any non-default values
that are selected through the Preferences Dialog are stored in the user’s preferences file,
which is located in the User Settings Directory.

All preferences are documented in the Preferences Reference.

2.3.1. Preferences File Layers
Wing’s preferences manager runs on a layered set of preferences files, as follows:

1) For each preference, Wing defines a hardwired default internally.

2) An installation-wide preferences file may be placed inside the Wing IDE in-
stallation directory (or on OS X the Contents/Mac0S directory within Wing’s
.app folder).

3) An individual user preferences file is stored in the User Settings Directory.

4) Additional preferences files may be specified on the command line with one or
more —--prefs-file options. For example:

wing4.1 --prefs-file /path/to/myprefs

44

The values given in later files in this list override values found in earlier ones. For
example, the user-specific preferences file take precedence over any values in the
WINGHOME/preferences file, and a file specified with --prefs-file would override val-
ues in the user-specific preferences file.

When preferences are changed, Wing writes the changes to the lowest file present on the
above list, either the last file specified with ——-prefs-file or the preferences file in the
User Settings Directory. Wing will never modify the installation-wide preferences file.

If a preference is set to a default value, as obtained from the preceding files in the above
list, then Wing removes the value from the writeable preferences file. This means that the
effective value of a preference can change in later IDE sessions even if the last file on the
list above is unchanged. This is by design to allow inheriting centrally managed default
values.

2.3.2. Preferences File Format

While we recommend using the preferences GUI to alter preferences, some users may
wish to edit the underlying text files manually.

The preferences file format consists of a series of sections separated by bracketed headers
such as [user-preferences]. These headers are used internally to identify from which
file a value was read, when there are multiple preferences files active.

The body of each section is a sequence of lines, each of which is a name=value pair. All
of these are read in from each preferences file, with later like-named settings overwriting
earlier ones.

Each preference name is in domain.preference form, where domain is the IDE subsystem
affected and preference is the name of the specific preference (for example, edit.tab-size
defines the source editor’s tab size).

Preference values can be any Python expression that will evaluate to a number, string,
tuple, list, or dictionary (the data type is defined by each preference and will be verified as
the file is read into Wing). Long lines may be continued by placing a backslash (\\) at the
end of a line and comments may be placed anywhere on a line by starting them with #.

If you wish to write preferences files by hand, refer to the Preferences Reference for
documentation of all available preferences.

45

2.4. Perspectives

Wing IDE Professional allows you to create and switch between subsets of the IDE’s tools,
as appropriate for particular kinds of work, such as editing, testing, debugging, working on
documentation, and so forth.

These subsets, or perspectives, are named and then accessed from the Tools menu, which
provides a sub-menu for switching between them. The current perspective is shown in
brackets in the lower left of Wing’s window.

Perspective Manager

The Tools menu also contains an item for displaying the Perspective Manager. The
Perspective Manager shows the name of each perspective, whether or not the perspective
is shared, whether or not the perspective is auto-saved, and the key binding (if any) that
is assigned to it.

The name of a perspective can be changed by clicking on the name within the list and
editing it in place.

When perspectives are shared, they are stored in the shared perspectives file, which is
configured with the Shared Perspective File preference, instead of in the project file.
This makes the shared perspectives available across all projects, or potentially to multiple
users. When multiple instances of Wing share this file, Wing will watch for changes and
auto-reload the set of perspectives into each instance of Wing, as another instance makes
changes. Note that when a shared perspective is un-shared, it is moved into the project
currently open in the instance of Wing that un-shared it.

When the Auto-save Perspectives is set to Configured by Perspective, the Perspec-
tive Manager will include a column to specify whether the perspective should be auto-saved
before transitioning to another perspective. This is described in more detail below.

When a key binding is defined, that key sequence will cause Wing to switch to the associated
perspective.

Perspective Manager Context Menu
The Perspective Manager provides the following functionality in its context (right-click)
mentu:

e New creates a new untitled perspective with the current state of the application.

e Duplicate makes a copy of the selected perspective, including its stored application
state.

46

Delete removes the selected perspective.

Set Key Binding displays a dialog in which the key binding desired for the perspec-
tive can be typed. This key sequence will cause Wing to switch to that perspective.

Update with Current State replaces the stored state for the selected perspective
with the current application state.

Restore Saved State loads the state stored in the selected perspective without
making that perspective current.

Preferences

The Perspective Manager’s Configure button displays the preferences that control how
perspectives work. These include:

e Perspective Style -- This controls how much of the visual state is stored in saved

perspectives. The default, Tools and Layout, causes a perspective to alter only
which tools are visible, where they are located, how many tool splits and toolboxes
there are, how many editor splits there are, and the relative sizes of editors and
toolbox areas and splits. Tools, Layout, and Editors stores in addition which
files are open in the editor, and A1l Visual State stores every detail of Wing’s
visual state, including the state of each tool and editor.

Auto-save Perspectives -- Selects when the current GUI state should be auto-
saved into a perspective before switching to another perspective. Always will always
auto-save all perspectives, Never disables auto-save entirely, Prompt causes Wing
to prompt each time when leaving a perspective, and Configured by Perspective
allows the behavior to be controlled for each perspective, in the Manage Perspectives
dialog. The default is Always so that the last application state is always restored
when returning to the perspective. Disabling auto-save can be useful for perspectives
that should always start with a previously stored fixed state.

Shared Perspective File -- This is used to specify where shared perspectives are
stored on disk. The default is a file perspectives in the User Settings Directory.

Auto-Perspectives

Auto-perspectives can be used to automatically switch between the built-in perspectives
edit and debug when debugging is started and stopped. When this is enabled, Wing by
default will show fewer tools when editing and most of the debugging tools only while de-
bugging. If the user alters which tools are shown from the defaults, this will be remembered
the next time debug is started or stopped.

47

Auto-perspectives are off by default and can be turned on with the Automatic Perspec-
tives attribute under the Debug tab in Project Properties.

Once this is enabled, Wing will save the unnamed pre-existing perspective as user and
will display the appropriate perspective edit or debug with its default tool set. Note that
the perspectives edit and debug are not created until the first time debugging is started.
After that, they appear in the Goto Perspective sub-menu in the Tools menu and in the
perspective manager.

Restoring Default Toolset

In Wing IDE Pro, the Tools menu item Restore Default Toolset will restore the tools
appropriate for the current perspective. If this is any of the built-in perspectives edit,
debug, or diff and the Automatic Perspectives preference is turned on, then the tool
set will differ from that which is used for user-defined perspectives or when automatic
perspectives are disabled.

2.5. File Filters

Wing provides a way to define sets of files that can be used in various ways within the
IDE, such as for searching particular batches of files and adding only certain kinds of files
to a project.

To view or alter the defined file sets, use the File Sets... item in the File menu. This
will display a file set editor within the Preferences manager.

When adding or editing a file set, the following information may be entered:

e Name - The name of the file set

e Includes -- A list of inclusion criteria, each of which contains a type and a specifica-
tion. A file will be included in the file set if any one of these include criteria matches
it.

e Excludes -- A list of exclusion criteria, any of which can match to cause a file to be
excluded from the file set even if one or more include matches were also found.

The following types of include and exclude criteria are supported:

e Wildcard on Filename -- The specification in this case is a wildcard that must
match the file name. The wildcards supported are those provided by Python’s fn-
match module.

http://wingware.com/psupport/python-manual/2.5/lib/module-fnmatch.html
http://wingware.com/psupport/python-manual/2.5/lib/module-fnmatch.html

48
e Wildcard on Directory Name -- The specification in this case is a wildcard that
must match the directory name.

e Mime Type -- The specification in this case names a MIME type supported by
Wing IDE. If additional file extensions need to be mapped to a MIME type, use the
Extra File Types preference to define them.

Once defined, file sets are presented by name in the Search in Files tool’s batch search
facility and in the Project tool’s batch file addition features.

Any problems encountered in using the file sets are reported in the Messages area.

Project Manager

The Project manager provides a convenient index of the files in your software project
and collects information needed by Wing’s debugger, source code analysis tools, version
control integration, and other facilities.

To get the most out of Wing’s debugger and source analysis engine, you may in some cases
need to set up Python Executable, Python Path, and other values in Project-Wide
Properties and/or Per-File Properties.

3.1. Creating a Project

To create a new project, use the New Project item in the Project menu. This will
prompt you to save any changes to your currently open project and will create a new
untitled project.

When you create a new project, you will often want to alter some of the Project Prop-
erties to point Wing at the version of Python you want to use, set PYTHONPATH so Wing’s
source analyzer and debugger can find your files, and set any other necessary runtime
environment for your code.

To add files to your project, use the following items in the Project menu:

e Add Existing Directory allows you to specify a directory to include in the project.
In many cases, this is the only operation needed to set up a new project, and it is the
recommended approach. You will be able to specify a filter of which files to include,
whether to include hidden & temporary files, and whether to include subdirectories.
The list of files in the project will be updated as files matching the criteria are added
and removed from the disk.

e Add Current File will add the current editor file to the project if it is not already
there.

49

20

e Add Existing File will prompt you to select a single file to add to the project view.
This may also result in adding a new directory to the project manager window, if
that file is the first to be added for a directory.

e Add New File is used to create a new file and simultaneously add it to your project.

A subset of these options can be accessed from the context menu that appears when right-
clicking your mouse on the surface of the project manager window.

3.2. Removing Files and Directories

To remove a specific file or directory, select it and use the Remove From Project menu
item in the right-click context menu from the surface of the Project Manager window, or
by selecting an item on the project and using Remove Selected Entry in the Project menu.

If the removed file or directory is part of another directory that has been added to the
project, the removal is remembered as an exclusion that can be cleared from Directory
Properties, which are accessed by right clicking on the parent directory in the Project
tool.

3.3. Saving the Project

To save a new project, use Save Project As in the Project menu. Once a project file
has been saved the first time, it will be auto-saved whenever you close the project, start a
debug session, or exit Wing.

You can also save a copy of your project to another location or name with Save Project
As... in the Project menu.

Moving Project Files

When moving a project file on disk, doing so in a file browser or from the command
line may partially break the project if it is moved relative to the position of files that
it includes. Using Save Project As... in Wing instead will properly update the
relative paths that the project manager uses to locate files in the project.

ol

3.4. Sorting the View

The project can be set to show your files in one of several modes, using the Options menu
in the top right of the project view:

e View As Tree -- This displays the project files in true tree form. The tree structure
is based on the partial relative path from the project file.

e View As Flattened Tree -- This view (the default) shows files organized according
to their location on disk. Each directory is shown at the top level with path names
shown as partial relative paths based on the location of the project file. If you alter
the location of the project file with Save Project As..., these paths will be updated
accordingly.

Several sorting options are available to sort items within their directory by name, mime
type, or extension. The List Files Before Directories option may be used to control
whether files or directories are shown first in the tree view.

3.5. Navigating to Files

Files can be opened from the project manager window by double clicking or middle clicking
on the file name, or right-clicking and using the Open in Wing IDE menu item.

Files may also be opened using an external viewer or editor by right-clicking on the file and
using the Open in External Viewer item. On Windows and Mac OS X, this opens the file
as if you had double clicked on it. On Linux, the preferences File Display Commands
and Extra Mime Types can be used to configure how files are opened.

You can also execute Makefiles, Python source code, and any executable files by selecting
the Execute Selected item from the popup menu. This executes outside of the debugger
with any input/output occurring in the OS Commands tool. Doing so also adds the
command to the OS Commands tool, where its runtime environment can be configured.

3.5.1. Keyboard Navigation

Once it has the focus, the project manager tree view is navigable with the keyboard, using
the up/down arrow keys, page up and page down, and home/end.

52

Use the right arrow key on a parent to display its children, or the left arrow key to hide
them.

Whenever a file is selected, pressing enter will open that item into an editor in Wing IDE.

3.6. Sharing Projects

Project File Types

There are two related formats in which you can save your project. One supports
sharing the project file with other developers, via a revision control system or other
method.

The default Project Type (accessed from Project Properties in the Project menu) is
Single User (One File). This stores all project data into a single file. The file name for
these files should end in .wpr.

To share a project file with other developers, change Project Type in the Options tab of
Project Properties to Shared (Two Files). Then save your project to obtain the two
separate project files on disk. The main project file name ends in .wpr and will contain
only shareable data. All user-specific data will be stored in a separate file with name ending
in .wpu.

If you subsequently change from a shared project back to single user, the user-specific data
will be merged back into the main project file and the file ending in .wpu will be removed
from disk.

Note that both the combined single user file and two split shared files use the same textual
file format that is used for the preferences file. See section Preferences File Format for
more information on the format itself.

Which project properties are stored in the main project file may be set by modifying the
main file with a text editor and setting the proj.shared-attribute-names attribute to
the list of names to be stored in the main file.

3.7. Project-wide Properties

Each project has a set of top-level properties that can be accessed and edited via the Prop-
erties item in the Project menu. These can be used to configure the Python environment

93

used when debugging, executing, or testing code, and for the source code analysis en-
gine, which drives Wing’s auto completion, source index, and other capabilities. Project
properties are also provided to set options for the project and to enable and configure
extensions for revision control, Zope, and other tools.

Any string value for a property may contain environment and special variable references,
as described in Variable Expansion.

Environment

To get the most out of Wing, it is important to set these values in the Environment tab
correctly for your project:

Python Executable -- When the Custom radio button is checked and the entered field is
non-blank, this can be used to set the full path to the Python executable that should be
used when debugging source code in this project. When Use default is selected, Wing
tries to use the default Python obtained by typing python on the command line. On OS X,
Wing prefers the latest Apple-provided Python. If this fails, Wing will search for Python
in /usr/local and /usr (on Linux and OS X) or in the registry (on Windows).

Python Path -- The PYTHONPATH is used by Python to locate modules that are imported
at runtime with the import statement. When the Use default checkbox in this area is
checked, the inherited PYTHONPATH environment variable is used for debug sessions. Oth-
erwise, when Custom is selected, the specified PYTHONPATH is used.

Environment -- This is used to specify values that should be added, modified, or removed
from the environment that is inherited by debug processes started from Wing IDE and is
used to expand environment variable references used in other properties. Each entry is in
var=value form and must be specified one per line in the provided entry area. An entry
in the form var= (without a value) will remove the given variable so it is undefined. Note
that you are operating on the environment inherited by the IDE when it started and not
modifying an empty environment. When the Use inherited environment choice is set, any
entered values are ignored and the inherited environment is used without changes.

Debug

The following properties are defined in the Debug tab:

Main Debug File -- This defines where execution starts when the debugger is launched
from the IDE. The default is to start debugging in the current editor file. Alternatively,

o4

use this property to define a project-wide main debug file so that debug always started in
that file regardless of which file is current in the editor.

Initial Directory -- When the Use default radio button is checked, the initial working
directory set for each debug session will be the directory where the debugged file is located.
When Custon is selected, the specified directory is used instead (use $ (WING: PROJECT_DIR)
for the project’s directory). This property also sets the initial directory for the Python Shell,
determines how Wing resolves partial paths on the Python Path for the purposes of static
analysis, and is used for other features in the IDE that require a starting directory for a
sub-process. For these, Wing will use the directory of the main debug file in the project
as the default initial directory, or the directory of the project file if there is no main debug
file defined.

Build Command -- This command will be executed before starting debug on any source
in this project. This is useful to make sure that C/C++ extension modules are built, for
example in conjunction with an external Makefile or distutils script, before execution
is started. The build is configured through and takes place in the OS Commands tool.

Python Options -- This is used to select the command line options sent to the Python
interpreter while debugging. The default of -u sets Python into unbuffered 1/0O mode,
which ensures that the debug process output, including prompts shown for keyboard input,
will appear in a timely fashion.

Debug Server Port -- This can be used to alter the TCP /IP port on which the debugger
listens, on a per-project basis. In this way, multiple instances of Wing using different
projects can concurrently accept externally initiated debug connections. See Advanced
Debugging Topics for details.

Automatic Perspectives -- When enabled, Wing will create and automatically switch
between Edit and Debug perspectives when debugging is stopped and started. See Per-
spectives for details.

Options

These project options are provided:

Project Type -- This can be used to select whether or not the project will be shared
among several developers. When shared, the project will be written to two files, one of
which can be shared with other developers. See Project Types for details.

Default Encoding sets the default text encoding to use for files when the encoding cannot
be determined from the contents of the file. This applies to all files opened when the project

95

is open, whether or not they are part of the project. By default, this falls back to the value
set by the Default Encoding preference.

Project Home Directory sets the base directory for the project. This overrides the
project file location as the directory on which to base relative paths shown in the Project
view and elsewhere. It is also used as the directory in which the Python Shell subprocess
is launched and for the starting directory when the Default Directory Policy preference
is set to Current Project.

Preferred Line Ending and Line Ending Policy control whether or not the project
prefers a particular line ending style (line feed, carriage return, or carriage return + line
feed), and how to enforce that style, if at all. By default, projects do not enforce a line
ending style but rather insert new lines to match any existing line endings in the file.

Preferred Indent Style and Indent Style Policy control whether or not the project
prefers a particular type of indentation style for files (spaces only, tabs only, or mixed tabs
and spaces), and how to enforce that style, if at all. By default, projects do not enforce an
indent style but rather insert new lines to match any existing indentation in the file.

Strip Trailing Whitespace controls whether or not to automatically remove whitespace
at the ends of lines when saving a file to disk.

Extensions

The Extensions tab of Project Properties is used to control add-ons on a per-project basis:

Enable Django Template Debugging enables Django-specific functionality that makes
it possible for Wing’s debugger to stop at breakpoints and step through Django template
files.

Matplotlib Event Loop Support enabled Matplotlib-specific functionality that updates
plots continuously when working interactively in the Python Shell.

Enable Zope2/Plone Support, Zope2 Instance Home, and Zope2 Host enable
legacy support for older Zope installations. They are needed because Zope 2.x implements
import magic that works differently from Python’s default import and thus adding the
instance home directory to PYTHONPATH is not sufficient. Wing’s source analyzer needs this
extra clue to properly find and process the Zope instance-specific sources.

When this option is activated, Wing will also offer to add the relevant Zope2/Plone files
to the project, and to install the control panel for configuring and initiating debug in
Zope2/Plone. See the Zope How-To for details.

56
Testing

Test File Pattern can be used to specify which files in the project should be shown in
the Testing tool. See the Testing chapter for details.

Default Test Framework defines the testing framework to use by default, unless another
is chosen using File Properties on the test file.

Environment can be used to select environment for running unit tests that differs from
the Project-wide settings, and for setting any command line arguments to send to unit
tests.

3.7.1. Variable Expansion

Any string value for a property may contain environment variable references using the
$ (name) or $ {name} notation. These will be replaced with the value of the environment
variable when it used by the IDE. If the environment variable is not set, the reference will
be replaced by an empty string. The system environment, as modified by the project-wide
or per-file environment property (if defined), is used to expand variable references.

The following special variable names are also available for use in the $(name) or ${name}
form:

e WING:FILENAME -- full path of current file

e WING:FILENAME_DIR -- full path of the directory containing the current file

e WING:LINENO -- current line number in the current file

e WING:SCOPE -- x.y.z-formatted name of the current scope in the current file (if Python)

e WING:PROJECT full path of current project

e WING:PROJECT_DIR -- full path of the directory containing the current project

e WING:PROJECT_HOME -- full path of the project home directory

e WING:SELECTION -- the text selected on the current editor, if any

These may evaluate to an empty string when there is no current file name.

57

3.8. Per-file Properties

Per-file properties can be set by right-clicking on a source file and selecting the Properties
menu item in the popup, by right-clicking on a file in the project view and selecting File
Properties, or by opening a file and using the Current File Properties... item in
the Source menu. For Debug and Python Settings, values entered here will override any
corresponding project-wide values when the selected file is the current file or the main
entry point for debugging.

Any string value for a property may contain environment and special variable references,
as described in Variable Expansion.

File Attributes

File Type -- This property specifies the file type for a given file, overriding the type deter-
mined automatically from its file extension and/or content. This property is recommended
only when the Extra File Types preference cannot be used to specify encoding based on
filename extension.

Encoding -- This can be used to specify the encoding with which a file will be saved.
When it is altered for an already-open file, Wing will offer to reload the file using the
new encoding, to only save subsequently using the new encoding, or to cancel the change.
Choose to reload if the file was opened with the wrong encoding. For already-open files,
the encoding attribute change is only saved if the file is saved. If it is closed without saving,
the encoding attribute will revert to its previous setting. The encoding cannot be altered
with this property if it is being defined by an encoding comment in a Python, HTML,
XML, or gettext PO file. In this case, the file should be opened and the encoding comment
changed. Wing will save the file under the newly specified encoding.

Important: Files saved under a different encoding without an encoding comment may
not be readable by other editors because there is no way for them to determine the file’s
encoding if it differs from the system or disk default. Wing stores the selected encoding in
the project file, but no mark is written in the file except for those encodings that naturally
use a Byte Order Mark (BOM), such as utf_16_le, utf_16_be, utf_32_le, or utf_32_be. Note
that standard builds of CPython cannot read source files encoded in utfl6 or utf32.

Line Ending Style -- Specifies which type of line ending (line feed, carriage return, or
carriage return and line feed) is used in the file. When altered, the file will be opened and
changed in an editor. The change does not take effect until the file is saved to disk.

Indent Style -- This property can be used in non-Python files to change the type of

o8

indent entered into the file for newly added lines. For Python files, the only way to alter
indentation in a file is with the Indentation manager.

Read-only on Disk -- This property reflects whether or not the file is marked read-only
on disk. Altering it will change the file’s disk protections for the owner of the file (on Posix,
group/world permissions are never altered).

Editor

These properties define how the file is displayed in the editor:

Show Whitespace -- This allows overriding the Show White Space preference on a
per-file basis.

Show EOL -- This allows overriding the Show EOL preference on a per-file basis.

Show Indent Guides -- This allows overriding the Show Indent Guides preference on
a per-file basis.

Ignore Indent Errors -- Wing normally reports potentially serious indentation inconsis-
tency in Python files. This property can be used to disable this check on a per-file basis
(it is also available in the warning dialog).

Ignore EOL Errors -- When the project’s Line Ending Policy is set to warn about
line ending mismatches, this property can be used to disable warnings for a particular file.

Environment

These properties are the same as for the Python Settings defined in Project-Wide Prop-
erties. Values defined per-file override the corresponding project-wide property.

For the Environment attribute, note that the option menu area contains some additional
choices. Use Add to Project Values to apply the values specified here to the runtime
environment specified by the project, or Add to System Environment to bypass the project-
wide values and apply the per-file values directly to the environment set by the operating
system.

99

Debug

The per-file debug properties dialog contains all the same fields described in Project-Wide
Properties, with the following additions:

Run Arguments -- Enter any run arguments here. Wing does not interpret backslashes
(") on the command line and passes them unchanged to the debug process. The only
exceptions to this rule are > and " (backslash followed by single or double quote), which
allow inclusion of quotes inside quoted multi-word arguments.

Show this dialog before each run -- Check this checkbox if you want the debug options
dialog to appear each time you start a debug session.

Values defined per-file override or modify the corresponding project-wide property.

When debugging, only per-file debug properties set on the initially invoked file are used.
Even if other files with set properties are used in the debug session, any values set for them
will be ignored.

Testing

The testing tab contains a subset of the fields described in Project-Wide Properties.

60

Source Code Editor

Wing IDE’s source code editor is designed to make it easier to adopt the IDE even if you
are used to other editors.

Key things to know about the editor

e The editor has personalities that emulate other commonly used editors such as
Visual Studio, VI/Vim, Emacs, and Brief.

e Context-appropriate auto-completion, goto-definition, and code index menus are
available when working in Python code

e The editor supports a wide variety of file types for syntax colorization.
e Key mappings and many other behaviors are configurable.

e The editor supports structural folding for some file types

4.1. Syntax Colorization

The editor will attempt to colorize documents according to their MIME type, which is
determined by the file extension, or content. For example, any file ending in .py will
be colorized as a Python source code document. Any file whose MIME type cannot be
determined will display all text in black normal font by default.

All the available colorization document types are listed in the File Properties dialog’s
File Attributes tab. If you have a file that is not being recognized automatically, you can
use the File Type menu found there to alter the way the file is being displayed. Your
selections from this menu are stored in your project file, so changes made are permanent
in the context of that project.

61

62

If you have many files with an unrecognized extension, use the Extra File Types prefer-
ence to add your extension.

Syntax coloring can be configured as described in the section Syntax Coloring.

4.2. Right-click Editor Menu

Right-clicking on the surface of the editor will display a context menu with commonly
used commands such as Copy, Paste, Goto Definition, and commenting and indentation
operations.

When revision control is enabled in Project Properties under the Extensions tab, the menu
is populated with additional items for the selected revision control system.

User-defined scripts may also add items here, as described in the Scripting chapter.

4.3. Navigating Source

The set of menus at the top of the editor can be used to navigate through your source
code. Each menu indicates the scope of the current cursor selection in the file and may be
used to navigate within the top-level scope, or within sub-scopes when they exist.

When editor tabs are hidden by clicking on the options drop down in the top right of the
editor area, the left-most of these menus lists the currently open files by name.

You can also use the Goto Definition menu item in the editor context menu to click on a
construct in your source and zoom to its point of definition. Alternatively, place the cursor
or selection on a symbol and use the Goto Selected Symbol Defn item in the Source
menu, or its keyboard equivalent.

When moving around source, the history buttons in the top left of the editor area can be
used to move forward and backward through visited files and locations within a file in a
manner similar to the forward and back buttons in a web browser.

Other commonly used ways to select among files that are open include the Window menu,
which lists all open files, and the Recent sub-menu in the File menu.

Additionally, the Open From Keyboard command in the File menu can be a convenient
way to find files quickly. This operates in a temporary input area at the bottom of the
IDE window and offers auto-completion of file names as you type.

63

See also the Find Uses tool and Source Browser.

4.4. File status and read-only files

The editor tabs, or editor selection menu when the tabs are hidden, indicate the status of
the file by appending * when the file has been edited or (r/o) when the file is read-only.
This information is mirrored for the current file in the status area at the bottom left of
each editor window. Edited status is also shown in the Window menu by appending * to
the file names found there.

Files that are read-only on disk are initially opened within a read-only editor. Use the
file’s context menu (right-click) to toggle between read-only and writable state. This alters
both the editability of the editor and the writability of the disk file so may fail if you do
not have the necessary access permissions to make this change.

4.5. Transient vs. Sticky Editors

Wing can open files in several modes that control how and when files are closed:

Transient Mode -- Files opened when searching, debugging, navigating to point of defi-
nition or point of use, and using the Project or Source Browser tools with the Follow Se-
lection checkbox enabled are opened in transient mode and will be automatically closed
when hidden.

The maximum number of non-visible transient files to keep open at any given time can be
set with the Editor / Advanced / Transient Threshold preference.

Sticky Mode -- Files opened from the File menu, from the keyboard file selector, or by
double clicking on items in the Project or Source Browser tools will be opened in sticky
mode, and are kept open until they are explicitly closed.

A file can be switched between these modes by clicking on the stick pin icon in the upper
right of the editor area.

Right-click on the stick pin icon to navigate to files that were recently visited in the
associated editor or editor split. Blue items in the menu were visited in transient state
and black items were sticky. Note that this differs from the Recent area in the File menu,
which lists only sticky file visits and includes visits for all editors and editor splits.

Transient files that are edited are also automatically converted to sticky mode.

64

4.6. Auto-completion

Wing Personal and Professional display an auto-completer in the editor and shells. When
the completer appears, type until the correct symbol is highlighted in the list, or use the
up/down arrow keys, and then press the Tab key or double click on an item. Wing will fill
in the remaining characters for the source symbol, correcting any spelling errors you might
have made in the name.

To alter which keys cause auto-completion to occur, use the Auto-completion Keys
preference. Ctrl-click on the list to select multiple keys. For printable keys such as ", ’(’,
'[’, and "’ the key will be added to the editor and any relevant auto-editing operations will
be applied. For ’.” the completer will be shown again for the attributes of the completed

symbol.

To cancel out of the auto-completion popup, press the Esc key or Ctrl-G. The auto-
completer will also disappear when you exit the source symbol (for example, by pushing
space or any other character that isn’t a completion key and can’t be contained in a source
symbol), if you click elsewhere on the surface of the source code, or if you issue other
keyboard-bound commands that are not accepted by the auto-completer (for example,
save through keyboard equivalent).

The completer can be configured to display immediately, only after a specified number of
characters, or after a time delay. Completion may be case sensitive or insensitive and the
completer may be auto-hidden after a specified timeout. These and other configuration
options are in the Auto-completion preferences group.

Turbo Completion Mode for Python (Experimental)

When the Python Turbo Mode preference is enabled, Wing will use a different com-
pletion mode for Python files and in the shells. This treats any non-word key as being a
completion key, in a context appropriate way. Ctrl, Alt, and Command act as cancel keys,
in addition to Esc.

This mode can be considerably faster to use when the completer contains the desired text.
Once the correct completion is selected in the completer, the next source code character
can immediately be typed. The completion will be placed, the next key will be entered
into the editor, any relevant auto-editing operations will be applied, and the completer
shown again if appropriate.

In contexts where a new symbol is being defined, Wing disables Turbo mode depending
on the character being pressed. For example, pressing = after a name at the start of a
line, entering an argument name in a def, and entering a symbol after for all define a new
symbol in most cases. In these contexts, Tab must be pressed to cause completion to occur.

65

The draw-back of operating in this mode is that Wing may fail to recognize some contexts
where a new symbol is being defined, or may enter undesired completions when code is
being typed before a referenced symbol has been defined. To make canceling from the
completer more convenient in this case, Ctrl, Alt“, and Command are also treated as cancel
keys, in addition to Esc.

For the same reason, snippets do not participate in Turbo mode. To enter snippets found
in the auto-completer, press Tab or Enter.

This mode is experimental. Please email feedback and suggestions to sup-
port@Qwingware.com.

How Auto-completion Works

The information shown in Wing’s auto-completer comes from several sources: (1) Static
analysis of Python code, (2) introspection of extension module contents, (3) inspection
of keywords and builtins in the active Python version, (4) introspection of the runtime
application state when the debugger is active or when working in the shells, (5) enumeration
of relevant code snippets, and in some cases (6) user-provided interface description files.
See Source Code Analysis for more information on how static analysis works and how
you can help Wing determine the types of values.

Because static analysis can be defeated by Python’s dynamic nature, it is sometimes more
effective to work from live runtime state. This can be done by placing a breakpoint in the

source code, running to it, and then working in the editor or (in Wing IDE Pro) in the
Debug Probe.

In non-Python files, the auto-completer is limited to words found within similar contexts in
the file, keywords defined for syntax highlighting that file type, and any snippets relevant
to the editing context.

4.7. Source Assistant

The Source Assistant tool (in Wing IDE Personal and higher) can be used while viewing
or editing source code to display additional information about the point of definition of
source constructs located near the insertion caret’s position.

The display will include links to the point of definition of a selection symbol, a guess at the
symbol’s type (when available) and a link to the type’s point of definition, and docstrings
and call signature when available.

For symbols in the Python standard library, Wing will attempt to compute a documentation

mailto:support@wingware.com
mailto:support@wingware.com

66

URL whenever possible. These point to http://docs.Python.org/ but can be redirected to
another server with the Source Analysis > Advanced > Python Docs URL Prefix
preference. To access locally stored documentation, a local http server must be used
because # bookmark references do not work with file: URLs.

Note that the source assistant is also integrated with the auto-completer, and will show
information as you scroll through the completion list. Similarly, it will updated as focus
moves into the Project and Source Browser tools.

When working in the editor, auto-completer, project view, or source browser, the source
assistant is fueled by Wing’s Python source code analysis engine. Because of Python’s
dynamic nature, Wing cannot always determine the types of all values, but presents as
much information as it can glean from the source code.

When a debug process is active, or when working in the Python Shell, Wing also extracts
relevant information from the live runtime state. Since this yields complete and correct
type information even for code that Wing’s static analysis engine cannot understand, it is
often useful to run to a breakpoint before designing new code that is intended to work in
that context.

For more hints on helping Wing understand your source code, see Source Code Analysis
and Helping Wing Analyze Code.

4.8. Auto-editing

Wing IDE Professional provides some optional auto-editing features, where the IDE tries
to reduce typing by auto-entering expected text. The following operations are available:

e Auto-Close Characters -- Wing enters matching quotes, parentheses, brackets,
braces, and comment closing characters. When this is enabled Wing skips over ex-
isting closing characters if they are typed anyway. Wing also auto-enters opening
parentheses, brackets, and braces when an unmatched closing character is typed in
Python code. This operation is disabled selectively when working within strings,
comments, and in other contexts where the auto-edit is more likely to interfere than
assist with editing. For example, quotes are not auto-closed within strings, most auto-
closing is disabled within single-quoted strings, auto-closing is disabled if there is a
matching unclosed character, auto-closing parentheses is disabled before a symbol,
and some operations are omitted while auto-entering invocation arguments.

e Auto-Enter Invocation Args -- Wing enters the default arguments for a function
or method invocation. The tab key or ’,” can be used to move among the arguments.

http://docs.Python.org/

67

Argument entry ends when moving past the last argument, or pressing ’)” at the last
argument. Unaltered default arguments are automatically removed when argument
entry ends.

Apply Quotes to Selection -- Wing will surround a non-empty selection with
quotes when the quote character is typed. In Python code, this will also convert
the type of quote used in a string (either single quote or double quote) if the string
is selected, or the caret is in the triple quote area, or one or more of the enclosing
quotes is selected,

Apply Comment Key to Selection -- For single-character comment keys, Wing
will comment out or uncomment out the currently selected lines, using the configured
Block Comment Style.

Apply (), [], and {} to Selection -- When an open parenthesis, bracket, or brace
is typed over a non-empty selection, Wing surrounds the selection with the matching
characters.

Auto-Enter Spaces -- In Python code, Wing auto-enters spaces when typing opera-
tors or punctuation. Some associated characters may also be entered, such as ’,” after
a dict item when ;" is pressed. When this operation is enabled, Wing also refuses
to enter redundant spaces or commas in contexts where spacing is being enforced.
In non-Python files this operation only enters spaces after a comma. Note that for
some operations such as typing "==" spacing will be adjusted differently after the

first and second keys are pressed.

Auto-Space After Keywords - In Python code, Wing also auto-enters spaces
after keyword names. No space is added when the keyword name matches a snippet
in the auto-completer, so that snippets can still be used.

Manage New Blocks -- In Python code, Wing auto-indents the current line, enters
the EOL character(s), and auto-indents the new line after a new block start is typed
and 7:* is pressed. In order to allow for adjustment of indentation before continuing,
no EOL will be inserted after ’else’, ’elif’, ’except’, and ’finally’ if the indentation
position for that statement is ambigious due to the presence of multiple potentially
matching starting blocks. In that case, pressing " repeatedly will toggle the in-
dentation between the possible positions. When this option is enabled and a new
line was entered, pressing ”:* a second time will remove the new line and indent the
following line of code under the new block. Pressing ”:“ a third time will indent the

next contiguous lines, up to any blank line or line that belongs to an enclosing block.

Continue Comment or String on New Line -- Wing auto-enters comment or
string delimiters when Enter is pressed within the text of an existing comment or a
string in the form (™) or (7).

68

Each of these operations can be enabled or disabled independently in the Auto-Editing
preferences group.

Where relevant (such as in spacing) Wing’s auto-editing modes adhere to the PEP8 Style
Guide for Python Code.

4.9. User-defined Bookmarks

Wing IDE Professional and higher support named user-defined bookmarks that can be set
and accessed from the Source menu and the key bindings shown there, and with Toggle
Bookmark in the editor context menu. Defined bookmarks are listed in the Bookmarks
tool and are shown with a background color change or underline on the editor. The style and
color of bookmark indicators can be changed with the Bookmark Style and Bookmark
Color preferences.

Bookmark names are global to the project and refer to a particular position within a
selected file:

e For Python files, bookmarks are defined relative to the enclosing scope (method,
class, or function), so changes before the line where the bookmark is located will
not cause the bookmark’s relative position in source code to be changed, even if
those changes are made outside of Wing. Edits made outside of Wing that affect the
code between the anchoring scope and the bookmarked line will cause a bookmark’s
position to slip.

e For all other types of files, bookmarks are defined simply by file name and line
number. If the file is edited outside of Wing, the bookmark’s position may appear to
slip.

When navigating to a bookmark from the Source menu or key binding, Wing will present
a dialog or entry area at bottom of the screen (depending on editor personality) into which
the bookmark name can be typed. A list of possible completions will be displayed. Pressing
tab will select the currently highlighted completion.

A list of defined bookmarks is available in the Bookmarks tool, which is available from the
Tools menu. Right click on an entry for a context menu of operations for the selected book-
mark or bookmarks. Multi-selection is possible by holding down the shift and/or control
keys. Double clicking or middle mouse clicking will navigate to the selected bookmark.

When the Bookmarks tool has focus, keyboard navigation is possible with the arrow keys

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

69

and by typing letters to move quickly to a particular bookmark. Enter can then be pressed
to navigate to the selected bookmark.

When bookmarks are defined in the current editor file, then Wing will add a bookmark
icon to the top right of the editor. Clicking on this will pop up a menu of the bookmarks
in the current file.

Traversing bookmarks (within the current file or within all files) is also possible with the
Traverse Bookmarks sub-menu in the Source menu and the key bindings shown there.

In VI mode, the standard m and \‘ plus key bindings are supported, in addition to the
operations in the Source menu, which allow for the definition of bookmarks with names
longer than one character.

Emacs, Brief, and other key bindings also support bookmarks. However, bookmark func-
tionality for VI, Emacs, and Brief key bindings is omitted in Wing IDE Personal.

4.10. Code Snippets

Wing Professional provides support for defining and using code snippets for commonly
reused bits of code and other text. Snippets might be used for standard file skeletons,
comment formats, dividers, class definitions, function definitions, HT'ML tables, and much
more. Variants of snippets may be defined for different contexts, for example to include or
omit self in a def depending on whether or not it is a method in a class.

Wing’s snippet functionality is implemented in the Snippets tool panel and by providing
the snippets by name in the editor’s auto-completer. Key bindings can be assigned to
snippets so that the snippets tool does not have to be visible in order to use a snippet.

Although Wing comes with a few example snippets, in most cases users will want to define
their own, to match their coding conventions and preferences.

User Interface

The Snippets tool panel provides the means for adding, editing, removing, and executing
snippets, and also assigning key bindings for pasting selected snippets into the current
editor. Most of the functionality is provided by the options menu in the top right and by
right clicking on the snippet list. Note that some of the operations (those followed by . ..
in the menus) will prompt for input at the bottom of Wing IDE’s window.

70

The option menu in the top right of the Snippets tool (also accessible by right-clicking
on the notebook tab area) provides items for adding, removing, and renaming file types
into which to organize snippets. The name of the file type is the file extension that Wing
should use by default when creating a new file based on a snippet. It is also used to look
up the mime type of the file, so that the snippet can be made available within any file of
that type, regardless of its actual name. The * file type, which is always present, allows
defining snippets that can be applied to all file types.

To add, edit, renamed, copy, and remove snippets, use the items in the context menu that
appears when you right-click on the surface of the snippet list in the Snippets tool. This
menu also provides items for inserting the snippet into the current file or a new file.

Contexts

It is possible to specify the context within the file for which a snippet is appropriate. This
allows, for example, the definition of a snippet def that varies to include or omit self
depending on whether or not it is within a class. When available, this is done with items
in the snippet list context menu. The snippet defined for context all will be used when no
specific context match is made. The default set of snippets that ship with Wing illustrate
this feature with the def and class snippet variants.

The set of valid contexts depends on file type. For Python files the valid context names
are module, class, method, function, comment, string. For HTML and XML, files are
divided into content, code (within < and >), comment, and string. Other files only
distinguish code, comment, and string. Additionally, the context all is used for all file
types to indicate any context.

To set the context for a snippet, click on the context name in the snippet lists’s Context
column, or use the items in the right-click context menu on the snippet list.

Key Bindings

The snippet list context menu menu also allows assigning key bindings to snippets, so they
can be executed more easily. The key binding entry area is shown at the bottom of the IDE
window, and Enter is pressed to accept the displayed binding. Note that bindings can be
multi-key sequences such as Ctrl-Shift-H Ctrl-A. Pressing the keys in sufficiently rapid
succession creates a sequence. Waiting a moment will start a new sequence when further
keys are pressed. Clicking away from the entry area will abort the operation without
assigning any key binding.

71

Note that key bindings are assigned to the snippet by name and not to a particular snippet
file. If multiple like-named snippets exists for different file types or contexts, the appropri-
ate snippet is chosen when the key binding is used.

Execution and Data Entry

When snippets are executed, Wing chooses the snippet by name and places the correct
variant according to the file type and the context within the current editor. The caret
position on the editor is used to determine the context, so altering the position of the caret
within leading indentation may alter which snippet variant Wing selects.

When a snippet is used, Wing will place default arguments into the snippet, convert inden-
tation and line endings to match the target file, paste it into the active editor, and place
the editor into inline data entry mode to collect additional arguments for the snippet.

In data entry mode, Wing will move between the data entry fields in the snippet when Tab
or BackTab are pressed. The position within the snippet’s fields will be displayed in the
status area at the bottom of the editor window.

In this mode, the Indent and Outdent commands in the Indentation sub-group of Wing’s
Source menu (and their key equivalents) can be used to increase or decrease the indentation
of the whole snippet within the editor. However, the same snippet variant that was used
initially will be used regardless of subsequent changes in indentation.

To exit data entry mode, press Esc (or Ctrl-G in emacs mode) or move the caret outside
of the pasted snippet. To undo the snippet insertion, use Undo in the Edit menu or its key
binding.

Auto-completion

Snippets are also listed in the editor’s auto-completer and may be activated from there. To
disable this feature, turn off the auto-completer preference Include Snippets in Com-
pleter.

Snippet Syntax

Snippets are text files that contain markers where user-provided values should be inserted.
These markers are similar to Python’s % (varname) s string substitution syntax but instead

72

of containing only a variable name, the body of the marker contains richer argument
collection information in the following format, with vertical bars dividing each value:

% (varname |type|default)s

Type and default are optional but the vertical bars must be present if omitting type but
including a default. To write a snippet that includes Python style string formats, escape
each % by writing %% instead.

Each part is defined as follows:

varname -- The name of the variable. Since arguments are collected inline, this name is
used internally only. Future extensions may display this name to the user, by replacing
underscores with spaces and capitalizing words (for example "user_name* would be rendered
"User Name®). If a variable name is used multiple times in a snippet, the same value will
be inserted multiple times.

An @ prepended to the variable name indicates that the value should be wrapped if it
exceeds the configured text wrap line column.

type -- The type of data to collect. Currently this is one of:

string(length) -- a string with given maximum length (uses default 80 chars if length is
omitted)

date -- current date in locale’s preferred format or in the time.strftime() format given
in the environment variable __DATE_FORMAT__

datetime -- current date+time in locale’s preferred format or in the time.strftime()
format given in the environment variable __DATETIME_FORMAT__

If this field is omitted or empty, string is assumed.

default -- The default value to use. This may be the actual value, or may contain envi-
ronment variable references in the form $(envname) or ${envname} to attempt to read all
or part of the value from the named environment variable or one of the special variables
enumerated in Variable Expansion.

Environment variables can be specified either in the Debug tab of Wing’s Project Prop-
erties or in the environment that exists before Wing is launched. Values in the Project
Properties override any values set before starting Wing.

When this field is omitted, or when no default environment value can be found, the field
will be left blank .

73

Indentation and Line Endings

Snippets should always use one tab for each level of indentation. Tabs will be replaced with
the appropriate indentation type and size when the snippet is used in a new or existing
file (either according to content of the target file or using the configured indent style and

indent size for new files). Wing will force tab indentation in all newly created snippet
files.

Similarly, line endings in snippets will be replaced with the appropriate type to match the
file to which the snippet is applied. However, there is no requirement for snippet files to
contain any particular kind of line ending.

If the snippet starts with |x| then x is a specification of how the indents in the snippet
should be converted. It can be one of:

e An integer: Re-indent as a block, like Wing’s indent-region command, so the first
line is at the given number of indent levels.

e The character 'm’: Re-indent as a block, like Wing’s indent-to-match command, so
the first line is at the expected indent level according to context in the source.

e The character 'm’ followed by '+ or -’ and an integer: Re-indent as for ’m’ and

then shift left or right by the given number of indents.

Any |x| at the start of a snippet file will be removed before the snippet is inserted into
an editor.

Cursor Placement

Snippets can contain |!| to indicate the final resting position of the cursor after all other
fields have been filled. When this is present, inline data entry mode is terminated auto-
matically when this position is reached (after all other fields have been entered). The mark
will be removed before snippets are inserted into an editor.

Snippet Directory Layout

Snippets are stored in the snippets directory in the user settings directory. The first
time the Snippets tool is used, this directory is populated by making a copy of the default
set of snippets that ship with Wing (these can be found in snippets within your Wing
IDE installation).

74
File Types

This directory is organized by the file type to which they apply. Snippets stored at the top
level of this directory can be used with any file in the editor and are shown in the * tab
in the Snippets tool. Those stored in sub-directories are used only for files of a particular
type. The name of the sub-directories is the file extension for that file type (for example
py for Python). This is converted to a mime type so that the snippets are available for
all files of that type, regardless of their naming. The name of the file type directory also
provides the file extension to use for new untitled files when a snippet is pasted into a new
file.

Contexts

When snippets are defined for a particular context within a file, they are stored in a
sub-directory named context.ctx where context is replaced with the context name (see
above). When a snippet is defined as the default, or without a particular context, it is
stored in the top level of the file type directory.

Configuration

Wing also stores a configuration file in the user’s snippets directory. This file is named
.config and is used for internal book keeping. It should not be altered or removed, as this
may cause the loss of your snippet files.

Commands

The following commands are available for invoking snippets:

snippet -- This will insert a snippet (selected by name) at the cursor in the current editor.
If there is a non-empty selection on the editor, it will replace the selection. The editor will
be placed into data entry mode for the collection of the snippet arguments.

snippet-file -- This will create a new file of the type specified by the snippet file’s extension
and insert the selected snippet into it before entering data entry mode in the editor for the
collection of the snippet arguments.

In most cases, you will use the Assign Key Binding item in the Snippets tool’s context
menu to invoke these commands for a particular snippet.

75
Scripting Snippets

Wing’s extension scripting API exposes the editor’s data entry mode and snippet processing
capabilities. This can be used to write scripts that generate snippets and paste them into
the editor for user data entry. This approach may be preferable when the snippet markup
language described above is not sufficient.

For details, see the PasteSnippet and StartDataEntry methods in wingapi.py and refer
to Scripting and Extending Wing IDE.

4.11. Indentation

Since indentation is syntactically significant in Python, Wing provides a range of features
for inspecting and managing indentation in source code.

4.11.1. How Indent Style is Determined

When an existing file is opened, it is scanned to determine what type of indentation is used
in that file. If the file contains some indentation, this may override the tab size, indent
size, and indent style values given in preferences and the file will be indented in a way that
matches its existing content rather than with your configured defaults. If mixed forms of
indentation are found, the most common form is used.

For non-Python files, you can change indentation style on the fly using the Indent Style
property in the File Properties dialog (accessed by right-clicking on the editor). This
allows creating files that intentionally mix indentation forms in different parts of the file.
To ask Wing to return to the form of indentation it determines as most prominent in the
file, select Match Existing Indents.

For Python files, the Indent Style cannot be altered without converting the whole file’s
indent style using the Indentation Manager, which can be accessed from the button
next to the Indent Style property and from the Tools menu.

76

Tab Size

Tab size is automatically forced to 8 characters for all Python source files that contain
some spaces in indentation. This is done because the Python interpreter defines tabs
as 8 characters in size when used together with spaces. This version of Wing does
not recognize vi style tab size comments, but it does apply the Tab Size preference
when a file contains only tabs in indentation, or if it is a non-Python file.

4.11.2. Indentation Preferences

The

1)

following preferences affect how the indentation features behave:

The Use Indent Analysis preference is used to control whether analysis of
current file content is used to determine the type of indentation placed during
edits. It can be enabled for all files, only for Python files, or disabled. Note
that disabling this preference for Python files can result in a potentially broken
mix of indentation in the files. In general, indent styles should not be mixed
within a single Python file.

The Default Tab Size preference defines the position of tab stops and is
used to determine the rendering of files with tabs only, or non-Python files
with mixed tab and space indentation. In Python files with mixed indents,
this value is ignored and the file is always shown in the way that the Python
interpreter would see it.

The Default Indent Size preference defines the default size of each level of
indent, in spaces. This is used in new empty files or when indent analysis has
been disabled. Wing may override this value in files that contain only tabs in
indentation, in order to make it a multiple of the configured tab size.

The Default Indent Style preference defines the default indentation style,
one of spaces-only, tabs-only, or mixed. This is used in new empty files
or when indent analysis has been disabled. Mixed indentation replaces each
tab-size spaces with one tab character.

These preferences define how indentation is handled by the editor:

5)

The Auto-Indent preference controls whether or not each new line is auto-
matically indented.

7

6) The Show Indent Guides preference controls whether or not to show inden-
tation guides as light vertical lines. This value can be overridden on a file-by-file
basis from Editor tab in File Properties.

7) The Show Python Indent Warnings preference can be used to enable or
disable warnings for Python files that may contain confusing or damaged in-
dentation.

8) The Show Override Warnings preference controls whether or not Wing
shows a warnings when the user enters indentation that does not match the
form already within a file. This is currently only possible in non-Python files,
by altering the Indent Style attribute in File Properties.

4.11.3. Indentation Policy

The project manager also provides the ability to define the preferred indentation style
(overriding the preference-defined style) and to specify a policy for enforcing line endings,
on a per-project basis. This is accomplished with Preferred Line Ending and Line
Ending Policy under the Options tab in Project Properties.

4.11.4. Auto-Indent

The IDE ships with auto-indent turned on. This causes leading white space to be added
to each newly created line, as return or enter are pressed. Enough white space is inserted
to match the indentation level of the previous line, possibly adding or removing a level of
indentation if this is indicated by context in the source (such as if, while, or return).

Note that if preference Auto-indent is turned off, auto-indent does not occur until the
tab key is pressed.

In Python code, Wing also auto-indents after typing a colon after else, elif, except,
and finally. Indentation will go to the closest matching if or try statement. I f there
are multiple possible matching statements, the colon key can be pressed repeatedly to
toggle through the possible positions for the line. Similarly, when Smart Tab is selected as
the Tab Key Action, then pressing the Tab key repeatedly will toggle the line through
the possible indent positions. This can also be accomplished with the Indent to Match
toolbar and menu items (regardless of selected tab key action).

When pasting multiple lines into Python code and the caret is in the indent region or on a
blank line, Wing will auto-indent pasted text as follows: (1) If the caret is in column zero,

78

the text is indented to match the context, (2) If the caret is within the indent region but
not in column zero, the text is indented to that position. If the auto-indent is incorrect, a
single Undo will return the pasted text to its original indentation level, or the text can be
selected and adjusted with the indentation toolbar or menu items or key equivalents.

4.11.5. The Tab Key
By default, the action of the tab key depends on the selected Keyboard Personality, file
type, and position within the file as described under Default for Personality below.

To insert a real tab character regardless of the indentation mode or the position of the
cursor on a line, type Ctrl-Tab or Ctrl-T.

The behavior of the tab key can be altered using the Tab Key Action preference, which
provides the following options:

Default for Personality

This selects from the other tab key actions below according to the chosen keyboard per-
sonality, current file type, and in some cases the position of the caret within the file. In all
non-Python files, the default is Move to Next Tab Stop. In Python files, the defaults are
as follows by keyboard personality:

e Normal: Indent to Match

e VI/VIM: Move to Next Tab Stop

e Emacs: Indent to Match

e Brief: Smart Tab

e Visual Studio: Move to Next Tab Stop

e 0S X: Smart Tab

Indent to Match

This indents the current line or selected lines to position them at the computed indent
level for their context in the file.

Move to Next Tab Stop

This enters indentation characters matching the current file’s style of indentation so that
the caret reaches the next tab stop.

79

Indent Region

This enters indentation characters matching the current file’s style of indentation to increase
the indentation of the current line or selected lines by one level.

Insert Tab Character
This inserts a Tab character (chr(9)) into the file.
Smart Tab

This option is available for Python files only. It implements the following behavior for the
tab key:

1) When the caret is within a line or there is a non-empty selection, this performs
Indent to Match. When the line or lines are already at the matching position,
indentation is toggled between likely positions as follows:

(a) If a comment precedes the current line or selection, then indentation
will match the position of the prior non-comment code line (if any).

(b) If multiple nested blocks match an ’else’, ’elif’, ’except’; or “finally’,
then indentation will match the position of the enclosing blocks
(traversing each in outward order).

(b) In other cases, indentation is reduced by one level.

2) When the caret is at the end of a non-empty line and there is no selection, one
indent level is inserted. The Smart Tab End of Line Indents preference
can be used to alter the type of indentation used or to disable this aspect of
the Smart Tab feature.

4.11.6. Checking Indentation

Wing IDE analyzes existing indentation whenever it opens a Python source file, and will
indicate a potentially problematic mix of indentation styles, allowing you to attempt to
repair the file. Files can be inspected more closely or repaired at any time using the
Indentation Manager.

To turn off indentation warnings in Python files, use the Show Python Indent Warnings
preference.

30

Wing also indicates suspiciously mismatched indentation in source code by underlining the
indent area of the relevant lines in red or yellow. In this case, an error or warning message
is displayed when the mouse hovers over the flagged area of code.

4.11.7. Changing Block Indentation

Wing provides Indent and Outdent commands in the Indentation portion of the Source
menu, which increase or decrease the level of indentation for selected blocks of text. All
lines that are included in the current text selection are moved, even if the entire line isn’t
selected.

Indentation placed by these commands will contain either only spaces, only tabs, or a
mixture of tabs and spaces, as determined by the method described in Indentation.

Indenting to Match

The command Indent Lines to Match (also in the Indentation sub-menu) will
indent or outdent the current line or selected lines to the level as a unit so that the
first line is positioned as it would have been positioned by Wing's auto-indentation
facility. This is very useful when moving around blocks of code.

4.11.8. Indentation Manager

The Indentation manager, accessible from the Tools menu, can be used to inspect and
change indentation style in source files. It has two parts: (1) The indentation report, and
(2) the indentation converter.

A report on the nature of existing indentation found in your source file is given above the
horizontal divider. This includes the number of spaces-only, tabs-only, and mixed tabs-and-
space indents found, information about whether indentation in the file may be problematic
to the Python interpreter, and the tab and indent size computed for that file. The manager
also provides information about where the computed tab and indent size value come from
(for example, an empty file results in use of the defaults configured in preferences).

Conversion options for your file are given below the horizontal divider. The three tabs are
used to select the type of conversion desired, and each tab contains information about the
availability and action of that conversion, and a button to start the conversion. In some
of the conversion options, the indent size field shown in the indentation report is made
editable, to allow specification of the desired resulting indent size.

81

Once conversion is complete, the indentation manager updates to display the new status
of the file, and action of any subsequent conversions.

Conversions can be undone be moving to the converted source file and selecting Undo from
the Edit menu.

4.12. Structural Folding

The editor supports optional structural folding for Python, C, C++, Java, Javascript,
HTML, Eiffel, Lisp, Ruby, and a number of other file formats. This allows you to visually
collapse logical hierarchical sections of your code while you are working in other parts of
the file.

You can turn Structural Folding on and off as a whole with the Enable Folding preference.

The Fold Line Mode preference can be used to determine whether or not a horizontal
line is drawn at fold points, whether it is drawn above or below the fold point, and whether
it is shown when the fold point is collapsed or expanded. Fold Indicator Style is used
to select the look of the fold marks shown at fold points.

Once folding is turned on, an additional margin appears to the left of source files that can
be folded. Left mouse click on one of the fold marks in this margin to collapse or expand
that fold point. Right mouse clicking anywhere on the fold margin displays a context menu
with the various folding operations.

You can also hold down the following key modifiers while left-clicking to modify the folding
behavior:

e Shift -- Clicking on any fold point while holding down the shift key will expand
that point and all its children recursively so that the maximum level of expansion is
increased by one.

e Ctrl -- Clicking on any fold point while holding down the ctrl key will collapse
that point and all its children recursively so that the maximum level of expansion is
decreased by one.

e Ctrl+Shift -- On a currently expanded fold point, this will collapse all child fold
points recursively to maximum depth, as well as just the outer one. When the
fold point is subsequently re-expanded with a regular click, its children will appear
collapsed. Ctrl-shift-click on a collapsed fold point will force re-expansion of all
children recursively to maximum depth.

82

Fold commands are also available in the Structural Folding section of the Source menu,
which indicates the key equivalents assigned to the operations:

e Toggle Current Fold -- Like clicking on the fold margin, this operates on the first
fold point found in the current selection or on the current line.

e Collapse Current More -- Like ctrl-clicking, this collapses the current fold point
one more level than it is now.

¢ Expand Current More -- Like shift-clicking, this expands the current fold point
one more level than it is now.

e Collapse Current Completely -- Like shift-ctrl-clicking on an expanded node, this
collapses all children recursively to maximum depth.

¢ Expand Current Completely -- Like shift-ctrl-clicking on a collapsed node, this
ensures that all children are expanded recursively to maximum depth.

e Collapse All -- Unconditionally collapse the entire file recursively.

e Expand All -- Unconditionally expand the entire file recursively.

e Fold Python Methods -- Fold up all methods in all classes in the file.
e Fold Python Classes -- Fold up all classes in the file.

e Fold Python Classes and Defs -- Fold up all classes and any top-level function
definitions in the file.

4.13. Brace Matching

Wing will highlight matching braces in green when the cursor is adjacent to a brace.
Mismatched braces are highlighted in red.

You can cause Wing to select the entire contents of the innermost brace pair from the
current cursor position with the Match Braces item in the Source menu.

Parenthesis, square brackets, and curly braces are matched in all files. Angle brackets (<
and >) are matched also in HTML and XML files.

33

4.14. Support for files in .zip or .egg files

Source and other text files stored in .zip or .egg files may be loaded into the editor as
readonly files. Wing is unable to write changes to a file within a .zip or .egg file or
otherwise write to or create a .zip or .egg file.

When stepping through code, using goto definition, or using other methods to goto a line
in a file, a file within a .zip or .egg file will be opened automatically. To open a file through
the open file dialog, specify the name of the .zip or .egg file and add a / followed by the
name of the file to open.

4.15. Keyboard Macros

The Edit menu contains items for starting and completing definition of a keyboard or
command sequence macro, and for executing the most recently defined macro. Once macro
recording is started, any keystroke or editor command is recorded as part of that macro,
until macro recording is stopped again. Most commands may be included in macros, as
well as all character insertions and deletions.

Macros can be quite powerful by combining keyboard-driven search (Mini-search in the
Edit menu), cursor movements, and edits.

4.16. Notes on Copy/Paste

There are a number of ways to cut, copy, and paste text in the editor:
e Use the Edit menu items. This stores the copy/cut text in the system-wide clipboard
and can be pasted into or copied from other applications.
e Use key equivalents as defined in the Edit menu.
e Right-click on the editor surface and use the items in the popup menu that appears.

e Select a range of text and drag it using the drag and drop feature. The default drag
operation is to copy on Linux and OS X and move on Windows. Pressing the Control
key after starting the drag toggles between moving or copying the text.

e On Linux, select text anywhere on the display and then click with the middle mouse
button to insert it at the point of click.

84

e On Windows and Mac OS X, click with the middle mouse button to insert the
current emacs private clipboard (if in emacs mode and the buffer is non-empty) or
the contents of the system-wide clipboard (in all other cases). On Mac OS X, the
middle mouse button is emulated by command or other key configured in the X11
Server’s preferences. This behavior may be disabled via the Middle Mouse Paste
preference

4.17. Auto-reloading Changed Files

Wing’s editor detects when files have been changed outside of the IDE and can reload files
automatically, or after prompting for permission. This is useful when working with an
external editor, or when using code generation tools that rewrite files.

Wing’s default behavior is to automatically reload externally changed files that have not
yet been changed within Wing’s source editor, and to prompt to reload files that have also
been changed in the IDE.

You can change these behaviors by setting the value of the Reload when Unchanged
and Reload when Changed preferences

On Windows, Wing uses a signal from the OS to detect changes so notification or reload is
usually instant. On Linux and Unix, Wing polls the disk by default every 3 seconds; this
frequency can be changed with the External Check Freq preference.

4.18. Auto-save

The source code editor auto-saves files to disk every few seconds. The auto-save files are
placed in a subdirectory of your User Settings Directory.

If Wing ever crashes or is killed from the outside, you can use these files to manually recover
any unsaved changes. Copy the auto-save files to overwrite the older unsaved files, doing
a comparison first to verify that the auto-save file is what you want.

Search /Replace

Wing provides a number of tools for search and replace in your source code. Which you
use depends on the complexity of your search or replace task and what style of searching
you are most familiar with.

5.1. Toolbar Quick Search

One way to do simple searches is to enter text in the search area of the toolbar. This scrolls
as you type to the next match found after the current cursor position. Pressing Enter will
search for each subsequent match, wrapping the search when the end of the file is reached.

Text matching during toolbar quick search is case-insensitive unless you enter a capital
letter as part of your search string.

If focus is off the toolbar search area and it already contains a search string, clicking on
it will immediately start searching in the current source editor for the next match. If
you wish to search for another string instead, delete the text and type the desired search
string. As you delete, the match position in the editor will proceed backward until it
reaches your original search start position, so that after typing your new search string you
will be presented with the first match after the original source editor cursor position.

5.2. Keyboard-driven Mini-Search/Replace

The Edit menu contains a Mini-Search sub-menu that enumerates the available keyboard-
driven search options. These are normally initiated with the keyboard command sequences
shown in the menu and can be controlled entirely by using the keyboard. All interaction
with the mini-search manager occurs using data entry areas displayed on demand at the
bottom of the IDE window.

85

36

The implementation of the mini-search manager is very close to the most commonly used
search and replace features found in Emacs, but it is available whether or not the Emacs
editor personality is being used.

The following search and replace features are available in this facility:

e Forward and Backward -- These display a search string entry area at the bottom of
the IDE window and interactively search forward or backward in the current source
editor, starting from the current cursor position. The search takes place as you type
and can be aborted with Esc or Ctr1-G, which returns the editor to its original cursor
location and scroll position.

Searching is case-insensitive unless you enter a capital letter as part of your search
string. To search repeatedly, press Ctrl-U (or Ctrl-S in emacs keyboard mode)
to search forward and ‘‘Ctrl-Shift-U (or Ctrl-R in emacs mode) to search in
reverse. The search direction can be changed any number of times and searching will
wrap whenever the top or bottom of the file is reached. You can also enter Ctr1-U (or
Ctrl-S in emacs mode) or Ctrl-Shift-U (or Ctrl-R in emacs mode) again initially
while the search string is still blank in order to call up the most recently used search
string and begin searching forward or backward with it.

Once the mini-search entry area is visible, Ctrl-W will add the current word in the
editor to the search string. Pressing Ctrl-W more than once while the mini-search
entry is visible adds additional words from the editor to the search string.

e Selection Forward and Selection Backward -- These work like the above but
start with the selection in the current source editor.

¢ Regex Forward and Regex Backward -- These work like the above but treat the
search string as a regular expression.

e Query/Replace and Regex Query/Replace -- This prompts for search and re-
place strings in an entry area at the bottom of the IDE window and prompts for
replace on each individual match found after the cursor location in the current source
editor. Press y to replace or n to skip a match and move on to the next one. The
interaction can be canceled at any time with Esc or -G. Matching is case insensitive
unless a capital letter is entered as part of the search string. Searching is always
forward and stops when the end of the file is reached, without wrapping to any un-
searched parts between the top of the file and the position from which the search was
started.

e Replace String and Replace Regex -- This works like the above command but
immediately replaces all matches without prompting.

87

5.3. Search Tool

The dockable Search tool can be used for more advanced search and replace tasks within
the current editor. It provides the ability to customize case sensitivity and whole/part
word matching, search in selection, and perform wildcard or regex search and replace.

The Replace field may be hidden and can be shown from the Options menu in the bottom
right of the tool.

To the right of the Search and Replace fields, Wing makes available a popup that contains
a history of previously used strings, options for inserting special characters, and an option
for expanding the size of the entry area.

The following search options can be selected from the tool:
e Case Sensitive -- Check this option to show only exact matches of upper and lower
case letters in the search string.

e Whole Words -- Check this option to require that matches are surrounded by white
space (spaces, tabs, or line ends) or punctuation other than _ (underscores).

e In Selection -- Search for matches only within the current selection on the editor.
The following additional options are available from the Options popup menu:

e Show Replace -- Whether or not the Replace field is visible in the tool.
e Text Search -- Select this to do a regular text search without wildcard or regex.

e Wildcard Search -- Select this to allow use of special characters for wildcarding in
the search string (see Wildcard Search Syntax for details).

e Regex Search -- Select this to use regular expression style searching. This is a more
powerful variant than wildcard search that allows for more complex specification of
search matches and replacement values. For information on the syntax allowed for the
search and replace strings, see Python’s Regular Expression Syntax documentation.
In this mode, the replace string can reference regex match groups with \1, \2, etc,
as in the Python re.sub() call.

e Wrap Search -- Uncheck this to avoid wrapping around when the search reaches
the top or bottom of a file.

http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html

38

e Incremental -- Check this to immediately start or restarted searching as you type
or alter search options. When unchecked, use the forward /backward search buttons
to initiate searching.

¢ Find After Replace - Select this to automatically find the next search match after
each Replace operation.

5.4. Search in Files Tool

The dockable Search in Files tool is used to search and replace within sets of files, or
for searching Wing’s documentation. It performs searches in batch and displays a result
list for all found matches. This list can then be traversed to view the matches in the
source editor, and is automatically updated as edits alter the search results. Searching
may span the current editor, a single selected file, all open files, all project files, all of
Wing’s documentation, or sets of files on disk.

Files in a set may be filtered by file type, for example searching only through Python files
in the project.

In addition the options also available in the search tool, the following choices are available

in the Options popup menu:

¢ Replace Operates On Disk -- Check this to replace text in un-opened files directly
on disk. Caution: see Replace in Multiple Files for details on this option.

e Recursive Directory Search -- Check this to search recursively within all sub-
directories of the selected search directory.

e Omit Binary Files -- Check this to omit any file that appears to contain binary
data.

e Auto-restart Searches -- Check this to restart searching immediately if it is in-
terupted because a search parameter or the set of files being searched is changed.

e Open First Match -- Check this to automatically open the first batch search match,
even before the result list is clicked upon.

e Show Line Numbers -- Check this to include line numbers in the batch result area.

o Result File Name -- This is used to select the format of the result file name shown
in the batch result area.

89

5.4.1. Replace in Multiple Files

For searches that operate on open files, replace always occurs in the open file editor and
can be undone or saved to disk subsequently, as with any other edit operation.

When replacing text in batch mode, some of the files being searched may not currently be
open in an editor. In this case, Wing will by default open all altered files and make changes
in newly created editors that remain open until the user saves and closes them explicitly.
This is the safest way to undertake multi-file global replace operations because it clearly
shows which files have been altered and makes it possible to undo changes.

An alternative approach is available by selecting the Replace Operates on Disk option
from the Options popup. This will cause Wing to change files directly on disk in cases
when there is no currently open editor.

Because global replace operations can be tricky to do correctly, we strongly recommend
using a revision control system or frequent backups and manually comparing file revisions
before accepting files that have been altered.

5.5. Find Points of Use

Wing IDE is able to find the locations where a symbol is used in the current project’s
Python files. To start a search, select or place the cursor in a symbol and then use Find
Points of Use in the Source menu or editor’s context menu (right-click) or Alt-click
on a symbol. Lines with matching symbols will be displayed in the Uses tool and clicking
on a match will display it in an editor.

Since Python is a dynamic language, it is sometimes impossible to determine for certain
whether a match is the same symbol. Matches are assigned a likelyhood of being correct,
as follows:

e Likely: The original symbol and found symbol resolve to the same definition so that
using Goto Definition on each will end up in the same place.

e Possible: Either the original symbol or the found symbol don’t resolve to any defi-
nition.

e Unlikely: The original symbol resolves to a different definition than the found sym-
bol.

Possible matches are listed with a question mark (?) preceding the filename and unlikely

90

matches are listed with double question mark (??) preceding the filename. Only likely and
possible matches are displayed by default. The display of possible and unlikely matches
may be toggled via the Options menu on a per-search basis.

When searching for uses of a class __init__ or __new__ methods, the results will include
matches where the class or a derived class is used by their original name to create new
instances.

If Wing is failing to see matches as resolving to the same point of definition, it may help
to add to the Python Path in Project Properties so that the source analysis engine can
resolve module imports.

Completed searches are stored in the Uses tool and can be referenced by clicking on the
drop down menu at the top of the tool and deleted by clicking on the close icon. Note that
searches do not automatically refresh as code is modified, but may be updated manually
with Refresh in the Options menu.

5.6. Wildcard Search Syntax

For wild card searches in the Search tools, the following syntax is used:

* can be used to match any sequence of characters except for line endings. For example,
the search string my*value would match anything within a single line of text starting
with my and ending with value. Note that * is "greedy” in that myinstancevalue =
myothervalue would match as a whole rather than as two matches. To avoid this, use
Regex Search instead with .*? instead of *.

7 can be used to match any single character except for line endings. For example,
my???value would match any string starting with my followed by three characters, and
ending with value.

[and] can be used to indicate sets of match characters. For example [abcd] matches any
one of a, b, ¢, or d. Also, [a-zA-Z] matches any letter in the range from a to z (inclusive),
either lower case or uppercase. Note that case specifications in character ranges will be
ignored unless the Case Sensitive option is turned on.

Refactoring

Wing IDE includes support for refactoring, which is the process of modifying code to
improve its structure and organization without changing its behavior. For example, refac-
toring can be used to rename a symbol wherever it is referenced or to move a block of code
into a function, replacing it with an invocation of the new function. Wing IDE’s refactoring
support provides very high-level editing operations that are informed by its understanding
of Python source code.

6.1. Rename Symbol

The rename symbol operation renames a variable, function, class, or module and updates
the locations where it is used. To start a rename operation, click on the symbol in the
editor and then select Rename Symbol from the Refactor menu or from the Refactor
sub-menu of the editor context menu (right-click). Wing will begin searching for all of the
locations where the symbol is used and list them in the Refactoring tool. To complete
the operation, enter the new symbol name and press the Rename Checked button.

Note that each found match for the symbol is displayed with a check box that can be
deselected to omit that match from the rename operation. Please refer to Find Points of
Use for more information on how Wing finds symbols for refactoring operations.

After it completes, the rename operation can be undone with the Revert button in the
Refactoring tool.

6.2. Move Symbol

The move symbol operation moves a variable, function, or class, and updates locations
where it is used to reference the symbol at its new location. To start a move operation,
click on the symbol to be moved and then select Move Symbol from the Refactor menu

91

92

or from the Refactor sub-menu of the editor context menu (right-click). Wing will search
for all of the locations where the symbol is used and list them in the Refactoring tool.
To complete the operation, enter the destination filename and / or scope name and press
the Move and Update Checked button.

Note that each found match for the symbol is displayed with a check box that can be
deselected to omit that match from the rename operation. Please refer to Find Points of
Use for more information on how Wing finds symbols for refactoring operations.

After it completes, the rename operation can be undone with the Revert button in the
Refactoring tool.

6.3. Extract Function / Method

The extract function / method operation creates a new function or method from the cur-
rently selected lines. It replaces the lines with a call to the new function or method, passing
in needed arguments and returning any values needed in the calling block of code.

To start an extract operation, select the lines to be extract in the editor and then select
Extract Function/Method from the Refactor menu or from the Refactor sub-menu of
the editor context menu (right-click). Wing will then display the Refactoring tool. To
complete the operation, enter the name for the new function or method, select the scope
in which to define it, and press the Extract button.

After it completes, the extract operation can be undone with the Revert button in the
Refactoring tool.

Note that the extract operation currently cannot extract lines that contain return state-
ments before the final line.

6.4. Introduce Variable

The introduce variable operation adds a variable that is initialized to the value of an existing
expression and then replaces the expression with the new variable. To start an introduce
variable operation, select an existing expression and then select Introduce Variable from
the Refactor menu or from the Refactor sub-menu of the editor context menu (right-
click). Wing will find all places the expression is used in the current scope and list them in
the Refactoring tool. To complete the operation, enter the name for the new variable and

93

press the Introduce Variable button. The name may include a dot, so a name starting
with self. may be used to introduce an instance attribute in a method.

Note that each found match for the expression is displayed with a check box that can be
deselected to omit that match from the rename operation.

After it completes, the introduce variable operation can be undone with the Revert button
in the Refactoring tool.

94

Diff/Merge Tool

Wing IDE Professional provides single and multi-file difference and merge capabilities.

To initiate a session, use the Diff/Merge toolbar item (click to display a menu of options) or
use the Difference and Merge menu item in the Source menu. You will be prompted for
any file or directory names in the status area at the bottom of the IDE window. Additional
sessions can be started concurrently but only one session is current at a given time. The
same menus can be used to switch among multiple concurrent sessions, when there are two
or more.

Once a session is started, the selected files will be displayed side by side, one annotated
with A: and the other annotated with B:. Use the newly revealed toolbar items to move
to the next or previous difference pair, to merge differences from one file into the other,
or to terminate the session. Navigation and merging is also possible with the key bindings
listed in the diff/merge menu.

In addition, a summary listing all changes is available from the diff/merge icon displayed at
the top right of editors in the active session. This includes line number, change summary;,
and Python scope name when applicable. Selecting a change from this menu will jump to
it.

The following types of difference/merge sessions are available:

e Compare Files -- Compare two selected files.

e Compare Directories -- Compare two selected directories. The Diff/Merge tool,
which will be shown while the multi-file session is active, will display a list of files
and estimated degree of difference in each file pair. Clicking on the list will display
the first difference in the selected file pair. The selection on the list will also update
as you move through the difference list.

e Compare Visible Files -- Compare the two visible files. This is only available when
two editor splits are shown and two different files are open in them.

95

96
e Compare Buffer with Disk -- Compare the current file and its contents on disk.
This is only available when the current file has unsaved edits.

e Compare Recent -- This provides a sub-menu for quick access to recently performed
comparisons.

e Compare to Repository -- When a file is in checked into one of the version control
systems that Wing IDE supports, this item can be used to compare the working copy
of the file with the corresponding revision in version control.

Diff/Merge Options

The Difference and Merge menu also contains two items that control the action of the
diff/merge sessions:

e Lock Scrolling -- When this is checked, Wing keeps the scrolling position of the
two files in the diff/merge session synchronized.

e Ignore Whitespace -- When this is checked, Wing will ignore changes that consist
solely of white space (space, tab, line feed, or carriage return characters).

It is also possible to select between side by side or top/bottom orientation of the two files
shown during a difference and merge session using the Orientation preference.

The color used in the highlights for differences can be configured with the Diff/Merge
Color preference.

Source Code Browser

The Source Browser, which is available only in Wing IDE Professional, acts as an index
to your source code, supporting inspection of collections of Python code from either a
module-oriented or class-oriented viewpoint.

Background Source Analysis

Wing IDE's source code analyzer will run in the background from the time that you
open a project until all files have been analyzed. You may notice this overhead imme-
diately after opening your project, depending on the size of your source base. Until
analysis is complete, the class-oriented view within the browser window will only in-
clude those classes that have been analyzed. This list is updated as more code is
analyzed.

8.1. Display Choices

The source code browser offers three ways in which to browse your source code: All code
by module, all code by class, or only the current file. These are selected from the menu at
the top left of the browser.

8.1.1. Browse Project Modules

When browsing project modules, the source browser shows in alphabetical order all Python
modules and packages that you have placed into your project and all modules and packages
reachable by traversing the directory structure that contains your project files (including
all sub-directories). The following types of items are present in this display mode, each of
which is displayed with its own icon:

97

98

e Packages, which are directories that contain a number of files and a special file
__init__.py. This file optionally contains a special variable __all__ that lists the
file-level modules Python should automatically import when the package as a whole
is imported. See the Python documentation for additional information on creating
packages.

e Directories found in your project that do not contain the necessary __init__.py file
are shown as directories rather than packages.

e Python files found at any level are shown as modules.
Within each top-level package, directory, or module, the browser will display all sub-
modules, sub-directories, modules, and any Python constructs. These are all labeled by
generic type, including the following types:

e class -- an object class found in Python source

e method -- a class method

e attribute -- a class or instance attribute

e function -- a function defined at the top-level of a Python module

e variable -- a variable defined at the top-level of a Python module
The icons for these are shown in the Options menu in the top right of the source browser.
Note that the base icons are modified in color and with arrows depending on whether they

are imported or inherited, and whether they are public, semi-private, or private. This is
described in more detail later.

8.1.2. Browsing Project Classes

When browsing by class, the browser shows a list of all classes found in the project. Within
each class, in addition to a list of derived classes, the methods and attributes for the class
are shown.

Navigation to super classes is possible by right-clicking on classes in the display.

99

8.1.3. Viewing Current Module

The browser can also be asked to restrict the display to only those symbols defined in the
current module. This view shows all types of symbols at the top level and allows expansion
to visit symbols defined in nested scopes. In this mode, the browser can be used as an
index into the current editor file.

8.2. Display Filters

A number of options are available for filtering the constructs that are presented by the
source code browser. These filters are available from the Options popup menu at the top
right of the browser. They are organized into two major groups: (1) construct scope and
source, and (2) construct type.

8.2.1. Filtering Scope and Source

The following distinctions of scope and source are made among the symbols that are shown
in the source browser. Constructs in each category can be shown or hidden as a group using
the filters in the Options menu:

e Public -- Constructs accessible to any user of a module or instance. These are names
that have no leading underscores, such as Print () or kMaxListLength.

e Semi-Private -- Constructs intended for use only within related modules or from
related or derived classes. These are names that have one leading underscore, such as
_NotifyError() or _gMaxCount. Python doesn’t enforce usage of these constructs,
but they are helpful in writing clean, well-structured code and are recommended in
the Python language style guide.

e Private -- Constructs intended to be private to a module or class. These are names
that have two leading underscores, such as __ConstructNameList() or __id_seed.
Python enforces local-only access to these constructs in class methods. See the
Python documentation for details.

e Inherited -- Constructs inherited from a super-class.

e Imported -- Constructs imported into a module with an import statement.

100
8.2.2. Filtering Construct Type

Constructs in the source code browser window can also be shown or hidden on the basis of
their basic type within the language:

e Classes -- Classes defined in Python source.

e Methods -- Methods defined within classes.

e Attributes -- Attributes (aka ’instance variables’) of a class. Note that these can be
either class-wide or per-instance, depending on whether they are defined within the
class scope or only within methods of the class.

e Functions -- Non-object functions defined in Python source (usually at the top-level
of a module or withing another function or method).

e Variables -- Variables defined anywhere in a module, class, function, or method.
This does not include function or method parameters, which are not shown in the
source browser.

8.3. Sorting the Browser Display

In all the display views, the ordering of constructs within a module or class can be controlled
from the Options popup menu in the browser.

e Alphabetically -- Displays all entries in the tree in alphabetic order, regardless of
type.

e By Type -- Sorts first by construct type, and then alphabetically.

e In File Order -- Sorts the contents of each scope in the same order that the symbols
are defined in the source file.

8.4. Navigating the Views

To navigate source code from the browser, double click on the tree display. This will open
source files to the appropriate location.

101

Source files opened from the browser will automatically close when browsing elsewhere,
except if they are edited or if the stick pin icon in the upper right of the source area
is clicked to indicate that the source file should remain open. For details on this, see
Transient vs. Sticky Editors.

The option Follow Selection may be enabled in the Options menu to cause the browser
to open files even on a single click or as the currently selected item on the browser is
changed from the keyboard.

Right-clicking on classes will present a popup menu that includes any super classes, allowing
quick traversal up the class hierarchy.

8.5. Browser Keyboard Navigation

Once it has the focus, the browser tree view is navigable with the keyboard, using the
up/down arrow keys, page up and page down, home/end, and by using the right arrow key
on a parent to expand it, or the left arrow key to collapse a parent.

Whenever a tree row is selected, pressing enter or return will open the source view for the
selected symbol in a separate window, indicating the point of definition for that symbol.

102

Interactive Python Shell

Wing provides an integrated Python Shell for execution of commands and experimental
evaluation of expressions. The version of Python used in the Python Shell, and the envi-
ronment it runs with, is configured in your project using Project Properties.

This shell runs a separate Python process that is independent of the IDE and functions
without regard to the state of any running debug process. In Wing Professional, the Debug
Probe can be used to interact in a similar way with your debug process. For details see
Interactive Debug Probe.

Convenient ways to run parts of your source code in the shell include:

Copy/Paste part of a file -- Wing will automatically adjust leading indentation so the
code can be executed in the shell.

Drag and Drop part of a file -- This works like Copy /Paste.

Evaluate File in Python Shell -- This command in the Source menu will evaluate the
top level of the current file in the shell.

Evaluate Selection in Python Shell -- The command in the Source menu and editor’s
context menu (right-click) will evaluate the current selection in the shell.

Options menu This menu in the Python Shell tool contains items for evaluating the
current file or selection

In the Python Shell, the Up and Down arrow keys will traverse the history of the code you
have entered and the return key will either execute the code if it is complete or prompt for
another line if it is not. Ctrl-Up and Ctrl-Down will move the cursor up and down and
Ctrl-Return will insert a new line character at the cursor position.

To restart the Python Shell, select Restart Shell from the Options menu in the top right
of the tool. This will terminate the external Python process and restart it, clearing and
resetting the state of the shell.

103

104

To save the contents of the shell, use Save a Copy in the Options menu or right-click
context menu. The right-click context menu also provides items for copying and pasting
text in the shell.

To preload some code into the Python Shell when it is started, you can set the PYTHON-
STARTUP environment variable, as supported by the Python Shell outside of Wing IDE.

9.1. Python Shell Auto-completion

Wing’s Python Shell includes auto-completion, which can be a powerful tool for quickly
finding and investigating functionality at runtime, for the purposes of code learning, or in
the process of crafting new code. The Python Shell’s completer is fueled by introspection
of the runtime environment.

The Source Assistant will display details for the currently selected item in the auto-
completer within the Python Shell. This provides quick access to the documentation and
call signature of functions and methods that are being invoked.

Goto-definition will also work in the Python Shell, using a combination of live runtime
state and static analysis to attempt to find the definition of the symbol or its type.

9.2. Python Shell Options

The Options menu in the Python Shell contains some settings that control how the Python
Shell works:

e Wrap Lines causes the shell to wrap long output lines in the display

e Filter history by entered prefix controls whether the history will be filtered by
the string between the prompt an the cursor. If history is filtered and a is entered at
the prompt, the up arrow will find the most recent history item starting with a

e Evaluate Whole Lines causes Wing to round up the selection to the nearest line
when evaluating selections, making it easier to select the desired range

e Auto-restart when Evaluate File causes Wing to automatically restart the shell
before evaluating a file, so that each evaluation is made within a clean new environ-
ment.

OS Commands Tool

Wing IDE Professional includes an OS Commands tool that can be used to execute and
interact with external commands provided by the OS or by other software, and to execute
files outside of the debugger.

This is used for the Execute items in the Debug menu and Project context menu and to
run any build command configured in Project Properties or File Properties. It can
also be used for other purposes such as integrating external commands into Wing, starting
code that is debugged using wingdbstub, and so forth.

Adding and Editing Commands

Whenever a file is executed outside of the debugger, or when a build command is configured,
these are added automatically to the OS Commands tool.

Additional items can be added with the Options menu’s New Toolbox Command item,
and any existing items can be edited or removed with the Edit and Remove items here.
For details, see OS Command Properties.

Executing Commands

The Options menu also includes items for starting, terminating, or restarting a command,
clearing the execution console, and selecting whether consoles should auto-clear each time
the process is started or restarted.

For Python files, it is also possible to specify that the Python interpreter should be left
active and at a prompt after the file is executed. This is done with the Python Prompt
after Execution item in the Options menu.

The area below the popup menu at the top of the OS Commands tool is the console where
commands are executed, where output is shown and where input can be entered for sending
to the sub-process. Use the popup menu to switch between multiple running processes, or
add multiple instances of the OS Commands tool to view them concurrently. The console

105

106

provides a context menu (right click) for controlling the process, copy/pasting, and clearing
or saving a copy of the output to a file.

Toolbox

The OS Commands Toolbox is hidden by default but can be shown with the Show Toolbox
item in the Options menu. This contains the same items in the popup menu at the top
of the OS Commands tool, but can be convenient for editing or removing multiple items,
or quickly executing a series of commands. Right click on the list for available actions, or
middle click or double click on the list to execute items.

Using Bash

To set up a bash shell running inside Wing IDE, add an OS Command with executable set
to bash -norc and enable the Use pseudo-TTY and Line mode options. This is a fairly
limited integration in that the tab key, color, and cursor movement are not supported.

10.1. OS Command Properties

Items added to the OS Commands tool can be configured to run within a particular envi-
ronment using the dialog shown when the item is added from the OS Commands tool or
by selecting an item and using the Edit item in the Options menu.

The following properties are available under two tabs in the dialog:
Definition

Type -- Two types of commands can be defined: A command, which can be any command
line, or a file which can be a Python file, a makefile, or any executable script or program.
For commands, the full command line is specified here. For files, the file is selected and no
arguments may be added for invocation of the file.

In command lines, use $(ENV) or ${ENV} to insert values from the environment or from

the special variables enumerated in Variable Expansion. These values will be empty if
undefined.

Note that the commands are executed on their own and not in a shell, so any commands
that are built into the shell cannot be used here. For example, on Windows dir and some
others are built-in commands so cannot be used directly; however, the form cmd /c dir
will work in this case. On Linux, invoking bash directly may be necessary in similar cases.

107

Title -- This is the user-assigned title to use for the command. If not set, the command
line or file name is shown instead.

I/0 Encoding -- This is the encoding to use for text sent to and received from the sub-
process.

Key Binding -- This field can be used to assign a key binding to the command. Press the
keys desired while focus is in the field. Multi-key sequences may be used if pressed within
a few seconds of each other. To replace an incorrect value, wait briefly before retrying your
binding. To reset the value to blank (no key binding), select all text and press Backspace
or Delete.

Auto-save files before execution -- Enable this to automatically save any unsaved changes
in open files before the command is executed.

Raise OS Commands when ezxecuted -- This option causes the OS Commands tool to be
shown whenever this command is executed. When disabled, the tool will not be brought
to front.

Use pseudo TTY -- This option is only available on Linux and OS X. When set, Wing
runs the subprocess in a pseudo tty and tries to (minimally) emulate how the command
would work in a shell. Many of the ANSI escape sequences are not supported, but the
basics should work. For some commands, adding options can help it to work better in the
OS Commands tool. For example, bash -norc works better than bash if you have bash
using colors, and ipython -colors NoColor works better than ipython alone.

Line mode -- This option is only available on Linux and OS X (on Windows, all 1/O
will be done line by line). When it is unchecked, Wing will enter raw mode and send
every keystroke to the subprocess, rather than collecting input line by line. Often, but
not always, when a pseudo TTY is being used then line mode should be disabled. Some
experimentation may be required to determine the best settings.

Environment

Initial Directory, Python Path, Environment -- These values act the same as the corre-
sponding values configurable in Project Properties.

Test Execute

While editing command properties, the Test Execute button can be used to try executing
with the current settings. A temporary entry is added to the OS Commands tool, and
removed again after the command properties dialog is closed.

108

Unit Testing

The Wing IDE Testing tool provides a convenient way to run and debug unit tests
written using the standard library’s unittest module, doctests, or the nose package from
http://somethingaboutorange.com/mrl/projects/nose/ For nose support, the nose package
must be installed via easy_install or other mechanism; Wing does not come with nose or
install it for you. Wing’s nose support was tested with nose 0.10.1.

Overview

To add tests, use the Testing menu items. Tests can be added individually with Add
Single File and Add Current File or can be added by applying a filter to the set of
all files in the project, using Add Files from Project. For details on adding from the
project, see Project Test Files.

The testing framework used by files is set through the Default Test Framework field on
the Testing page of Project properties or the Test Framework field on the Testing
page of File properties for individual test files.

To run tests, press the Run Tests button, or use one of the items in the Testing menu.
For details, see Running Tests.

While tests are running, a jogging man icon is shown next to the test(s) in the Testing
tool’s list.

After the tests have finished running, the status indicator for the test will turn into a
green check or red warning sign, depending on whether the test failed or succeeded. Status
indicators for each file will also be set to red or green depending on whether any test failed
or not. Individual test nodes may be expanded to show any output generated by the test
or any exception that occurred. Exceptions may be expanded to display tracebacks.

Navigating

Double-clicking on any node or using the Goto Source option on the right-click popup menu
in the testing tool’s tree will display source code in the editor, if the source is available

109

http://somethingaboutorange.com/mrl/projects/nose/

110

Note that the File Filter field in the Testing tool can be used to subset the list of tests
displayed in the tool. Restore it to blank or use the Clear item in its popup menu to see
the entire lists of tests. This is a convenient way to find and focus on only those tests being
worked on.

11.1. Project Test Files

A subset of a project’s files can automatically be included in the list of test files in the
Testing tool. The set of files is specified by the Test file patterns field on the Testing tab
of the Project Properties dialog (which can also be accessed using the Add Files from
Project menu item.

Any file matching the glob style wildcard pattern specified here is considered a test file.
For details, see Wildcard Search Syntax. If the field is left empty then no project files
will automatically be added.

Automatically added files may not be removed from the project tool’s list except by altering
the set of wild cards in the Test file patterns project attribute.

11.2. Running Tests

Tests can be run and debugged from Wing in a variety of ways. The options are:

e Run all tests in the testing tool. This is done with the Run All Tests item in the
Testing menu or by selecting no tests (or all tests) in the list and pressing the Run
Tests button.

e Run only the tests in current file open in the source editor. This is done with the
Run Tests in Current File item in the Testing menu.

e Run a subset of test(s) by location of the cursor or selection in the source editor.
This is done with the Run Tests at Cursor item in the Testing menu.

e Run tests that failed the last time tests were run. This is done with the Run Failed
Tests item in the Testing menu.

e Run all tests that were run the last time tests were run. This is done with the Run
Tests Again item in the Testing menu.

111

Test files and/or individual tests may also be selected in the Testing tool and run with the
Run Tests button or using the items in the context menu (right click) on the Testing tool.

For each of these run options, there is an equivalent debug option that will run the tests
in the debugger. These are in the Debug group of the Testing menu.

To stop running tests, use the Abort Running Tests item in the Testing menu or the
Abort Tests item on the Testing tool.

To clear the previous test results from the Testing tool, use the Clear Results item in
the right-click context menu.

11.3. Running unittest Tests From the Command Line

Wing’s unittest test runner can be run from the command line and store results in an XML
file that can be loaded into Wing via the Load Test Results item in the Testing menu.
The test runner script is src/testing/runners/run_unittest_xml.py within the Wing
installation directory. It should be run with the Python interpreter that should be used
for the selected tests as follows:

/path/to/python /path/to/src/testing/runners/run_unittests_xml.py [op-
tions] -q testModule.className.testName

Where [options] is replaced with any of the command line options listed below and the
test specification is the test specification used when running with the standard library’s
unittest module. The test specification above consists of testModule is the module name
(without .py), className is the test class name, and testName is the name of the test to
run. To run all tests in a class, omit the testName. To run all tests in a module, omit also
the className.

Available command line options are:
e —-directory=<dirname>: Run in the given directory. Otherwise runs in the current
directory inherited from the command line.

e ——output-file=<filename>: Write results to the selected file. Results are written
to stdout if this option is not given.

e ——append-to-file: Append results to the file selected with the ——output-file=
option.

112

e —-one-module-per-process: Run each module in a separate process space to avoid
unintended interactions between the tests. Tests are still run sequentially and not
concurrently.

e —-pattern=<glob filename pattern>: Run tests in each filename matching the
given glob pattern. This option may be repeated multiple times with different glob
patterns. It also turns on the —-one-process-per-module option.

Note: Only the unittest test runner supports running from the command line. The doctest,
nose, and Django test runners cannot be used this way.

Debugger

Wing’s debugger provides a powerful toolset for rapidly locating and fixing bugs in single-
threaded or multi-threaded Python code. It supports breakpoints, stepping through code,
inspecting and changing stack or module data, watch points, expression evaluation, and
command shell style interaction with the paused debug process.

The debugger is built around a TCP/IP client/server design that supports launching your
application not just from Wing itself but also externally, as with CGI scripts or code
running in an embedded scripting facility within a larger application. Remote (host to
host) debugging is also provided.

Because the debugger core is written in optimized C, debug overhead is relatively low;
however, you should expect your programs to run about 50% slower within the debugger.

12.1. Quick Start

Wing IDE can be used to debug all sorts of Python code, including scripts and stand-alone
applications written with wxPython, Tkinter, PyQt, PyGTK, and pygame. Wing can
also debug web CGIs including those running under mod_python, code running under
Zope, Plone, Turbogears, Django, Paste/Pylons, Twisted, and code running in an
embedded Python interpreter.

This section describes how to debug stand-alone scripts and applications that can be
launched from within Wing IDE. If you wish to debug web CGls within the web server, web
servlets, or embedded Python scripts, please refer to Debugging Externally Launched
Code and, for remote host-to-host debugging, see Remote Debugging.

Before debugging, you will need to install Python on your system if you have not already
done so. Python is available from www.python.org.

To debug Python code with Wing, open up the Python file and select Start / Continue

113

http://www.python.org/

114

from the Debug menu. This will run to the first breakpoint, unhandled exception, or until
the debug program completes. Select Step Into instead to run to the first line of code.

Use the Debug 1/0 tool to view your program’s output, or to enter values for input to
the program. If your program depends on characteristics of the Windows Console or a
particular Linux/Unix shell, see External I/O Consoles for more information.

In some cases, you may also need to enter a PYTHONPATH and other environment values
using the Project Properties dialog available from the Project menu. This can also be
used to specify which Python executable should be used to run with your debug process.
Use this if Wing IDE cannot find Python on your system or if you have more than one
version of Python installed.

To set breakpoints, just click on the leftmost part of the margin next to the source code. In
Wing IDE Professional, conditional and ignore-counted breakpoints are also available from
the Breakpoint Options group in the Debug menu, or by right-clicking on the breakpoints
margin.

12.2. Specifying Main Entry Point

Normally, Wing will start debugging in whatever file you have active in the frontmost
editor. Depending on the nature of your project, you may wish to specify a file as the
default debug entry point. This is done with Set Current As Main Debug File in the
Debug menu, by right clicking on a file in the Project tool and selecting Set As Main
Debug File, or by setting Main Debug File in Project Properties.

When a main debug entry point is specified, it is used whenever you start the debugger,
except when using Debug Current File in the Debug menu, or when right-clicking on an
entry in the project manager and choosing the Debug Selected context menu item.

Note that the path to the main debug file is highlighted in red in the project window.

The main entry point defined for a project is also used by the source code analysis engine
to determine the python interpreter version and Python path to use for analysis. Thus,
changing this value will cause all source files in your project to be reanalyzed from scratch.
See section Source Code Analysis for details.

115

12.3. Debug Properties

In some cases, you may need to set project and per-file properties from the Project manager
before you can debug your code. This is done to specify Python interpreter, PYTHONPATH,
environment variables, command line arguments, start directory, and other values associ-
ated with the debug process. For details, see Project-Wide Properties and Per-file
Properties.

12.4. Setting Breakpoints

Breakpoints can be set on source code by opening the source file and clicking on the
breakpoint margin to the left of a line of source code. Right-clicking on the breakpoint
margin will display a context menu with additional breakpoint operations and options. In
Wing IDE Professional, the Breakpoints tool in the Tools menu can be used to view,
modify, or remove defined breakpoints. Alternatively, the Debug menu or the toolbar’s
breakpoint icons can be used to set or clear breakpoints at the current line of source
(where the insertion cursor or selection is located).

Breakpoint Types

In Wing IDE Professional, the following types of breakpoints are available:

e Regular - A regular breakpoint will always cause the debugger to stop on a given
line of code, whenever that code is reached.

e Conditional -- A conditional breakpoint contains an expression that is evaluated
each time the breakpoint is reached. The debugger will stop only if the conditional
evaluates to True (any non-zero, non-empty, non-None value, as defined by Python).
You may edit the condition of any existing breakpoint with the Edit Breakpoint
Condition... item in the Breakpoint Options group of the Debug menu, by right
clicking on the breakpoint, or in the Breakpoints tool.

e Temporary -- A temporary breakpoint will be removed automatically after the first
time it is encountered. No record of the breakpoint is retained for future debug runs.

116
Breakpoint Attributes

Once breakpoints have been defined, you can operate on them in a number of ways to alter
their behavior. These operations are available as menu items in the Debug menu, in the
breakpoint margin’s context menu, and from the Breakpoints tool:

e Ignore Count -- It is possible to set an ignore count for a breakpoint. In this
case, the breakpoint will be ignored the given number of times, and the debugger
will only stop at the breakpoint if it is encountered more than the set number of
times. The ignore count is reset to its original value with each new debug run. Use
the Breakpoint tool to monitor the remaining number of times a breakpoint will be
ignored.

e Disable/Enable -- Breakpoints can be temporarily disabled and subsequently re-
enabled. Any disabled breakpoint will be ignored until re-enabled.

Breakpoints Tool

The Breakpoints tool, available in the Tools menu displays a list of all currently defined
breakpoints. The following columns of data are provided:

e Enabled -- Checked if the breakpoint is enabled. The checkbox can be used to alter
the breakpoint’s state.

e Location -- The file and line number where the breakpoint is located

e Condition -- The conditional that must be true for the breakpoint to cause the
debug process to stop (or blank if the breakpoint is not conditional). This value can
be changed by clicking on it and editing it directly on the list.

e Temporary -- Checked if the breakpoint is a temporary (one-time) breakpoint. The
checkbox can be used to alter the breakpoint’s type.

e Ignores -- The number of times the breakpoint should be ignored before it causes
the debugger to stop. This value can be changed by clicking on it and editing it
directly on the list.

e Ignores Left -- The number of ignores left for a breakpoint, if a debug process
exists.

e Hits -- The number of times the breakpoint has been reached in the current debug
run (if any).

117

To visit the file and line number where a breakpoint is located, double click on it in the
list or select Show Breakpoint from the context menu obtained by right-clicking on the
surface of the Breakpoints tool. Additional options are also available from this context
menu.

Keyboard Modifiers for Breakpoint Margin

Clicking on the breakpoint margin will toggle to insert a regular breakpoint or remove
an existing breakpoint. You can also shift-click to insert a conditional breakpoint, and
control-click to insert a breakpoint and set an ignore count for it.

When a breakpoint is already found on the line, shift-click will disable or enable it, control-
click will set its ignore count, and shift-control-click will set or edit the breakpoint condi-
tional.

12.5. Starting Debug

There are several ways in which to start a debug session from within Wing:

e Choose Start / Continue from the Debug menu or push the Debug icon in the
toolbar. This will run the main debug file if one has been defined (described in
Setting a Main Debug File), or otherwise the file open in the frontmost editor
window. Execution stops at the first breakpoint or exception, or upon program
completion.

e Choose Step Into from the Debug menu or push the Step Into icon in the toolbar.
This will run the main debug file if one has been defined, or otherwise the file open
in the frontmost editor window. Execution stops at the first line of code.

e Choose Debug Current File from the Debug menu or Debug Selected from the
right-click popup menu on the Project tool to run a specific file regardless of whether
a main debug file has been specified for your project. This will stop on the first
breakpoint or exception, or upon program completion.

e Choose Run to Cursor from the Debug menu or toolbar. This will run the main
debug file if one has been defined or otherwise the file open in the frontmost ed-
itor window. Execution continues until it reaches the line selected in the current
source text window, until a breakpoint or exception is encountered, or until program
completion.

118
e Use Debug Recent in the Debug menu to select a recently debugged file. This will
stop on the first breakpoint or exception, or upon program completion.
e Use one of the key bindings given in the Debug menu.
Additional options exist for initiating a debug session from outside of Wing and for attach-

ing to an already-running process. These are described in sections Debugging Externally
Launched Code and Attaching, respectively.

Once a debug process has been started, the status indicator in the lower left of the window
should change from white or grey to another color, as described in Debugger Status.

Non-Standard Python Interpreters

If you are attempting to run your debug process against a non-standard ver-
sion of Python, for example one that has been compiled with altered values for
Py_TRACE_REFS or WITH_CYCLE_GC, or that has been altered in other ways, you
may need to recompile the debugger core module. This is only possible with Wing
IDE Professional, as it requires access to the source code. Please contact us for
details.

12.6. Debugger Status

The debugger status indicator in the lower left of editor Windows is used to display the state
of the debugger. Mousing over the bug icon shows expanded debugger status information
in a tool tip. The color of the bug icon summarizes the status of the debug process, as
follows:

e White -- There is no debug process, but Wing is listening for a connection from an
externally launched process.

e Gray -- There is no debug process and Wing is not allowing any external process to
attach.

e Green -- The debug process is running.
e Yellow -- The debug process is paused or stopped at a breakpoint.
e Red -- The debug process is stopped at an exception.

The current debugger status is also appended to the Debugger status group in the IDE’s
Messages tool.

mailto:support@wingware.com

119

12.7. Flow Control

Once the debugger is running, the following commands are available for controlling further
execution of the debug program from Wing. These are accessible from the tool bar and
the Debug menu:

e At any time, a freely running debug program can be paused with the Pause item
in the Debug menu or with the pause tool bar button. This will stop at the current
point of execution of the debug program.

e At any time during a debug session, the Stop Debugging menu item or toolbar item
can be used to force termination of the debug program. This option is disabled by
default if the current process was launched outside of Wing. It may be enabled for
all local processes by using the Kill Externally Launched preference.

When stopped on a given line of code, execution can be controlled as follows from the
Debug menu or tool bar:

Step Over will step over a single byte code operation in Python. This may not leave the
current line if it contains something like a list comprehension or single-line for loop.

Step Into will attempt to step into the next executed function on the current line of code.
If there is no function or method to step into, this command acts like Step Over.

Step Out will complete execution of the current function or method and stop on the first
instruction encountered after returning from the current function or method.

Continue will continue execution until the next breakpoint, exception, or program termi-
nation

Run To Cursor will run to the location of the cursor in the frontmost editor, or to the
next breakpoint, exception, or program termination.

Attach and Detach (only in Wing IDE Professional) may be used to change the debugger
between different debug processes. This is for advanced users and is detailed in Attaching
and Detaching.

12.8. Viewing the Stack

Whenever the debug program is paused at a breakpoint or during manual stepping, the
current stack is displayed in the Call Stack tool. This shows all program stack frames

120

encountered between invocation of the program and the current run position. Outermost
stack frames are higher up on the list.

When the debugger steps or stops at a breakpoint or exception, it selects the innermost
stack frame by default. In order to visit other stack frames further up or down the stack,
select them in the Call Stack tool. You may also change stack frames using the Up Stack
and Down Stack items in the Debug menu, the up/down tool bar icons, the stack selector
popup menus the other debugging tools.

When you change stack frames, all the tools in Wing that reference the current stack frame
will be updated, and the current line of code at that stack frame is presented in an editor
window.

In Wing IDE Professional, the current stack frame is also used to control evaluation context
in the Debug Probe and Watch tools.

To change the type of stack display, right-click on the Call Stack tool and select from the
options for the display and positioning of the code line excerpted from the debug process.

When an exception has occurred, a backtrace is also captured by the Exceptions notifi-
cation tool, where it can be accessed even after the debug process has exited.

12.9. Viewing Debug Data

The Wing IDE debugger provides several ways in which to look at your debug program’s
data:

(1) By inspecting locals and globals using the Stack Data tool. This area displays
values for the currently selected stack frame.

(2) By browsing values in all loaded modules (as determined by sys.modules),
using the Modules tool.

(3) By watching specific values from either of the above views (right click on values
to add them to the Watch tool)

(4) By typing expressions in the Watch tool.

121

Values Fetched on Demand

The variable data displayed by Wing is fetched from the debug server on the fly as
you navigate. Because of this, you may experience a brief delay when a change in an
expansion or stack frame results in a large data transfer.

For the same reason, leaving large amounts of debug data visible on screen may slow
down stepping through code.

12.9.1. Stack Data View

The Stack Data debugger tool contains a popup menu for selecting thread (in multi-
threaded processes) and accessing the current debug stack, a tree view area for browsing
variable data in locals and globals, and a textual view area for inspecting large data values
that are truncated on the tree display.

Simple values, such as strings and numbers, and values with a short string representation,
will be displayed in the value column of the tree view area.

Strings are always contained in "" (double quotes). Any value outside of quotes is a number
or internally defined constant such as None or E1lipsis.

Integers can be displayed as decimal, hexadecimal, or octal, as controlled by the Integer
Display Mode preference.

Complex values, such as instances, lists, and dictionaries, will be presented with an angle-
bracketed type and memory address (for example, <dict 0x80ce388>) and can be ex-
panded by clicking on the expansion indicator in the Variable column. The memory
address uniquely identifies the construct. If you see the same address in two places, you
are looking at two object references to the same instance.

If a complex value is short enough to be displayed in its entirety, the angle-bracketed form
is replaced with its value, for example {’a’: ’b’} for a small dictionary. These short
complex values can still be expanded in the normal way.

Upon expansion of complex data, the position or name of each sub-entry will be displayed
in the Variable column, and the value of each entry (possibly also complex values) will be
displayed in the Value column. Nested complex values can be expanded indefinitely, even
if this results in the traversal of cycles of object references.

Once you expand an entry, the debugger will continue to present that entry expanded,
even after you step further or restart the debug session. Expansion state is saved for the
duration of your Wing IDE session.

122

When the debugger encounters a long string, it will be truncated in the Value column.
In this case, the full value of the string can be viewed in the textual display area at the
bottom of the Stack Data tool, which is accessed by right-clicking on a value and selecting
Show Detail. The contents of the detail area is updated when other items in the Stack
Data tool are selected.

Opaque Data

Some data types, such as those defined only within C/C++ code, or those containing
certain Python language internals, cannot be transferred over the network. These
are denoted with Value entries in the form <opaque 0x80ce784> and cannot be
expanded further. In Wing IDE Professional you may be able to use the Debug
Probe to access them (for example try typing dir (value)).

12.9.1.1. Popup Menu Options

Right-clicking on the surface of the Stack Data view displays a popup menu with options
for navigating data structures:

e Show/Hide Detail -- Used to quickly show and hide the split where Wing shows
expanded copies of values that are truncated on the main debug data view (click on
items to show their expanded form).

o Expand More -- When a complex data value is selected, this menu item will expand
one additional level in the complex value. Since this expands a potentially large
number of values, you may experience a delay before the operation completes.

e Collapse More -- When a complex data value is selected, this menu item will
collapse its display by one additional level.

e Watch by ... -- These items can be used to watch a debug data value over time, as
described in Watching Values.

e Force Reload -- This forces Wing IDE to reload the displayed value from the de-
bug process. This is useful in cases where Wing is showing an evaluation error or
when the debug program contains instances that implement __repr__ or similar spe-
cial methods in a way that causes the value to change when subjected to repeated
evaluation.

123
12.9.1.2. Filtering Value Display

There are a number of ways in which the variable displays can be configured:

e Wing lets you prune the variable display area by omitting all values by type, and
variables or dictionary keys by name. This is done by setting the two preferences,
Omit Types and Omit Names.

e You can also tell Wing to avoid probing certain values by data type. This is useful
to avoid attempting expansion of data values defined in buggy extension modules,
which can lead to crashing of the debug process as the debugger invokes code that
isn’t normally executed. This preference is also respected during introspection of the
runtime state for auto-completion and other features in the IDE. To add values to
avoid, set preference Do Not Expand.

e Wing provides control over size thresholds above which values are considered too
large to move from the debug process into the variable display area. Values found
to be too large are annotated as huge in the variable display area and cannot be
expanded further. The data size thresholds are controlled with preferences Huge
List Threshold and Huge String Threshold.

e By default Wing will display small items on a single line in the variable display areas,
even if they are complex types like lists and maps. The size threshold used for this
is controlled with preference Line Threshold. If you want all values to be shown
uniformly, this preference should be set to 0.

12.9.2. Watching Values

Wing can watch debug data values using a variety of techniques for tracking the value over
time. In most cases, watching a value is initiated by right-clicking a value within a Stack
Data view and selecting one of the Watch menu items. The value is then added to the list
in the Watch tool and tracked by one of the following methods:

e By Symbolic Path - The debugger looks at the symbolic path from locals()
or globals() for the currently selected stack frame, and tries to re-evaluate that
path whenever the value may have changed. For example, if you define a dictionary
variable called testdict in a function and set a value testdict[1] = ’test’, the

124

watched value for testdict [1] would show any value for that slot of testdict, even
if you delete testdict and recreate it. In other words, value tracking is independent
of the life of any object instances in the data path.

e By Direct Object Reference - The debugger uses the object reference to the
selected value to track it. If you use this mode with testdict as a whole, it would
track the contents of that dictionary as long as it exists. If you were to reassign the
variable testdict to another value, your zoomed out display would still show the
contents of the original dictionary instance (if it still exists), rather than the new
value of the variable testdict. In other words, the symbolic path to the value is
completely disregarded and only instance identity is used to track the value. Because
it’s meaningless to track immutable types this way, this option is disabled or enabled
according to the values you select to zoom out into a separate window.

e By Parent Reference and Slot - The debugger uses the object reference to the
parent of the selected data slot and uses a symbolic representation of the slot within
the parent in order to determine where to look for any value updates. This means
that reassignment of the variable that points to the parent does not alter what is
displayed in the zoomed-out view; only reassignment of the selected slot changes
what is displayed by the debugger.

e By Module Slot - This is only available for values within a module, such as string,
sys.path, or os.environ. The debugger uses the module name to look up the
module in sys.modules and references the value by symbolic path. Any change in
the value, even across module reloads, is reflected in the Watch view.

For any of these, if the value cannot be evaluated because it does not exist, the debugger
displays <undefined>. This happens when the last object reference to a reference-tracked
value is discarded, or if a selected symbolic path is undefined or cannot be evaluated.

The Watch tool will remember watch points across debug sessions, except those that make
use of an object reference, which do not survive the debug process.

12.9.3. Evaluating Expressions

The debugger Watch tool can also be used to view the value of keyboard-entered ex-
pressions. These may be entered by clicking on any cell in the Watch manager’s display
tree and editing or entering the desired expression in the Variable column. Press enter to
complete the editing session.

Only expressions that evaluate to a value may be entered. Other statements, like variable

125

assignments, import statements, and language constructs are rejected with an error. These
may only be executed using the Debug Probe.

Expressions are evaluated in the context of the current debug stack frame, so this feature
is available only when the debug program has been paused or has stopped at a breakpoint
or exception. This also means that the value of the same typed expression may change as
you move up and down the call stack in the main debugger window.

In cases where evaluating an expression results in changing the value of local or global
variables, your debug program will continue in that changed context. Whenever a value
is changed as a result of expression evaluation, the updated value will be propagated into
any visible debugger variable display areas because Wing IDE refetches all displayed data
values after the evaluation of each expression. However, since you may not notice these
changes, caution is required to avoid undesired side-effects in the debug process.

Note that breakpoints are never reached as a result of expression evaluation, and any
exceptions encountered are not reported. If you need to debug an expression, use the
Debug Probe where exceptions will be reported.

12.9.4. Problems Handling Values

The Wing debugger tries to handle debug data as gently as possible to avoid entering into
lengthy computations or triggering errors in the debug process while it is packaging debug
data for transfer. Even so, not all debug data can be shown on the display. This section
describes each of the reasons why this may happen:

Wing may time out handling a value -- Large data values may hang up the debug
server process during packaging. Wing tries to avoid this by carefully probing an object’s
size before packing it up. In some cases, this does not work and Wing will wait for the
data for the duration set by the Network Timeout preference and then will display the
variable value as <network timeout during evaluate>.

Wing may encounter values too large to handle -- Wing will not package and transfer
large sequences, arrays or strings that exceed the size limits set by Huge List Threshold
and Huge String Threshold preferences. On the debugger display, oversized sequences
and arrays are annotated as huge and <truncated> is prepended to large truncated strings.

To avoid this, increase the value of the threshold preferences, but be prepared for longer
data transfer times. Note that setting these values too high will cause the debugger to
time out if the Network Timeout value isn’t also increased.

An alternative available in Wing IDE Professional for viewing large data values is to enter

126

expressions into the Watch tool or Debug Probe to view sub-parts of the data rather
than tranferring the whole top-level portion of the value.

Wing may encounter errors during data handling -- Because Wing makes assign-
ments and comparisons during packaging of debug data, and because it converts debug
data into string form, it may execute special methods such as __cmp__ and __str__ in
your code. If this code has bugs in it, the debugger may reveal those bugs at times when
you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++ extension
module code is invoked. In this case, the debug session is ended.

More common, but still rare, are cases where Wing encounters an unexpected Python
exception while handling a debug data value. When this happens, Wing displays the value
as <error handling value>.

These errors are not reported as normal program errors in the Exceptions tool. However,
extra output that may contain the exception being raised can be obtained by setting the
Debug Internals Log File preference.

Stored Value Errors

Wing remembers errors it encounters on debug values and stores these in the project file.
These values will not be refetched during subsequent debugging, even if Wing is quit and
restarted.

To override this behavior for an individual value, use the Force Reload item in the right-
click context menu on a data value.

To clear the list of all errors previously encountered so that all values are reloaded, use the
Clear Stored Value Errors item in the Debug menu. This operates only on the list of
errors known for the current debug file, if a debug session is active, or for the main debug
file, if any, when no debug process is running.

12.10. Debug Process 1/0

While running under the Wing debugger, any output from print or any writes to stdout
or stderr will be seen in the Debug I/0O tool. This is also where you enter keyboard
input, if your debug program requests any with input() or raw_input() or by reading
from stdin.

The code that services debug process I/O does two things: (1) any waits on sys.stdin are

127

multiplexed with servicing of the debug network socket, so that the debug process remains
responsive to Wing IDE while waiting for keyboard input, and (2) in some cases, 1/0O is
redirected to another window.

For a debug process launched from within Wing, keyboard 1/O always occurs either in
the Debug 1/0 tool or in a new external console that is created before the debug process
is started. This can be controlled as described in External I/O Consoles. Using an
external console is recommended when printing very large amounts of output from a debug
process.

Debug processes launched outside of Wing, using wingdbstub, always do their keyboard
I/O through the environment from which they were launched (whether that’s a console
window, web server, or any other I/O environment).

When commands are typed in the Debug Probe, 1/0 is redirected temporarily to the
Debug Probe only during the time that the command is being processed.

12.10.1. External I/O Consoles

In cases where the debug process requires specific characteristics provided by the Windows
Console or specific Linux/Unix shell, or to better handle very large amounts of debug
process output, you can redirect debug I/O to a new external window using the Use
External Console preference.

The most effective way to keep the external console visible after the debug process exits is
to place a breakpoint on the last line of your program. Alternatively, enable the External
Console Waits on Exit preference. However, this can result in many external consoles
being displayed at once if you do not press enter inside the consoles after each debug run.

On Linux/Unix it is possible to select which console applications will be tried for the
external console by altering the External Consoles preference.

Windows always uses the standard DOS Console that comes with your version of Windows.

12.10.2. Disabling Debug Process 1/0O Multiplexing

Wing alters the I/O environment in order to make it possible to keep the debug process
responsive while waiting for I/O. This code mimics the environment found outside of the
debugger, so any code that uses only Python-level I/O does not need to worry about this
change of environment.

128

There are however several cases that can affect users that bypass Python-level I/O by doing
C/C++ level 1/0O from within an extension module:

e Any C/C++ extension module code that does standard I/O calls using the C-level
stdin or stdout will bypass Wing’s 1/O environment (which affects only Python-
level stdin and stdout). This means that waiting on stdin in C or C++ code will
make the debug process unresponsive to Wing, causing time out and termination of
the debug session if you attempt to Pause or alter breakpoints at that time. In this
case, redirection of I/O to the debugger 1/O tool and Debug Probe (in Wing Pro
only) will also not work.

e On all platforms, calling C-level stdin from multiple threads in a multi-threaded
program may result in altered character read order when running under the Wing
debugger.

e When debugging on win32, calling C-level stdin, even in a single-threaded program,
can result in a race condition with Wing’s I/O multiplexer that leads to out-of-order
character reads. This is an unavoidable result of limitations on multiplexing keyboard
and socket 1/O on this platform.

If you run into a problem with keyboard I/O in Wing’s debugger, you should:

1) Turn off Wing’s 1/O multiplexer by setting the Use sys.stdin Wrapper pref-
erence to False.

2) Turn on the Use External Console preference (for details see External I/0
Consoles)

Once that is done, I/O should work properly in the external console, but the debug process
will remain unresponsive to Pause or breakpoint commands from Wing IDE whenever it
is waiting for input, either at the C/C++ or Python level.

Also, in this case keyboard input invoked as a side effect of using the Debug Probe will hap-
pen through unmodified stdin instead of within the Debug Probe, even though command
output will still appear there.

12.11. Interactive Debug Probe

The Debug Probe acts like the Python Shell for evaluating and executing arbitrary
Python code in the context of a debug program. This acts on the current debug stack
frame, and is available only when the debug program is paused.

129

You may use many of Wing’s source editor commands and key bindings within the De-
bug Probe, and can use the up/down arrow keys to traverse a history of recently typed
commands.

Like the Python Shell, the Debug Probe in Wing provides auto-completion and integrates
with the Source Assistant so that documentation and call signatures are readily available
for functions and methods that are invoked here. Goto-definition works here as well.

This makes the Debug Probe particularly useful, not just to find and understand bugs, but
also in crafting and trying out new code to fix the bug.

Even when no bugs are present, the Debug Probe can be used to craft code quickly in the
live context in which it is intended to work. To do this, set a breakpoint where you plan
to place the code, debug until you reach that breakpoint, then work in the Debug Probe
to design parts or all of your new code. The auto-completer and Source Assistant running
in the live program context make navigation of unfamiliar or complex code quite easy, and
can greatly speed up the design and implementation of new features for existing code.

Conditional breakpoints are a natural companion for the Debug Probe. Setting a condi-
tional breakpoint makes it easier to isolate one iteration or invocation out of many, thus
isolating either a problematic case for which a bug fix is needed, or a particular case for
which a new feature is desired.

In the Debug Probe, the Up and Down arrow keys will traverse the history of the code you
have entered and the return key will either execute the code if it is complete or prompt for
another line if it is not. Ctrl-Up and Ctrl-Down will move the cursor up and down and
Ctrl-Return will insert a new line character at the cursor position.

12.11.1. Managing Program State

If commands you type change any local, instance, or global data values, cause modules to
be loaded or unloaded, set environment variables, or otherwise alter the run environment,
your debug program will continue within that altered state. All visible variable display
views are also updated after each line entered in the Debug Probe in order to reflect any
changes caused by your commands. Since you may not notice these changes, caution is
needed to avoid creating undesired side-effects in the running debug program.

Note that breakpoints are never reached as a result of entries typed into the Debug Probe,
and any exceptions are reported only after the fact. This means that activity in the Debug
Probe has no effect on the debug run position or stack, even though an exception location
in source code may in some cases be displayed.

130

12.11.2. Debug Probe Options

The Options menu in the Debug Probe provides the following choices:

e Clear -- Clear previous text from the shell.

e Filter history by entered prefix -- controls whether the history will be filtered
by the string between the prompt an the cursor. If history is filtered and a is entered
at the prompt, the up arrow will find the most recent history item starting with a

e Save a Copy -- Save a copy of the shell to a disk file.

e Wrap Lines -- Toggle whether or not long lines are wrapped in the display.

Preference Raise Source from Tools can be used to determine whether source code
windows will be raised when exceptions occur in the Debug Probe.

12.12. Debugging Multi-threaded Code

Wing’s debugger can debug multi-threaded code, as well as single-threaded code. By
default, Wing will debug all threads and will stop all threads if a single thread stops. If
multiple threads are present in the debug process, the Stack Data tool (and in Wing Pro
the Debug Probe and Watch tools) will add a thread selector popup to the stack selector.

Even though Wing tries to stop all threads, some may continue running if they do not
enter any Python code. In that case, the thread selector will list the thread as running. It
also indicates which thread was the first one to stop.

When moving among threads in a multi-threaded program, the Show Position icon shown
in the toolbar during debugging (between the up/down frame icons) is a convenient way
to return to the original thread and stopping position.

Whenever debugging threaded code, please note that the debugger’s actions may alter the
order and duration that threads are run. This is a result of the small added overhead,
which may influence timing, and the fact that the debugger communicates with the IDE
through a TCP/IP connection.

Selecting Threads to Debug

Currently, the only way to avoid stopping all threads in the debugger is to launch your
debug process from outside Wing, import wingdbstub, and use the debugger API’s Set-
DebugThreads () call to specify which threads to debug. All other threads will be entirely

131

ignored. This is documented in Debugging Externally Launched Code and the API
is described in Debugger API

An example of this can be seen in the file DebugHttpServer.py that ships with Wing’s
support for Zope and Plone. To see this, unpack the WingDBG archive found inside the
zope directory in your Wing installation.

Note, however, that specifying a subset of threads to debug may cause problems in some
cases. For example, if a non-debugged thread starts running and does not return control
to any other threads, then Wing’s debugger will cease to respond to the IDE and the
connection to the debug process will eventually be closed. This is unavoidable as there is
no way to preemptively force the debug-enabled threads to run again.

12.13. Managing Exceptions

By default, Wing’s debugger stops at exceptions when they would be printed by the Python
interpreter or when they are logged with logging.exception. Wing will also stop on all
AssertionError exceptions, whether or not they are printed or logged, since these usually
indicate a program error even if they are handled.

The Debugger > Exceptions preference group can be used to control how Wing ap-
proaches exception reporting. This includes the following preferences.

Exception Reporting Mode

The overall strategy for identifying and reporting exceptions is configured with the Report
Exceptions preference. The following choices are available:

When Printed (default) -- The debugger will stop on exceptions at the time that they
would have been printed out by the Python interpreter.

For code with catch-all exceptions written in Python, Wing may fail to report unexpected
exceptions if the handlers do not print the exception. In this case, it is best to rewrite the
catch-all handlers as described in Trouble-shooting Failure to Stop on Exceptions.

In this exception handling mode, any code in finally clauses, except clauses that reraise
the exception, and with statement cleanup routines will be executed before the debugger
stops because they execute before the traceback is printed.

Always Immediately -- The debugger will stop at every single exception immediately

132

when it is raised. In most code this will be very often, since exceptions may be used
internally to handle normal, acceptible runtime conditions. As a result, this option is
usually only useful after already running close to code that requires further examination.

At Process Termination -- In this case, the debugger will make a best effort to stop
and report exceptions that actually lead to process termination. This occurs just before or
sometimes just after the process is terminated. The exception is also printed to stderr,
as it would be when running outside of the debugger.

When working with an Externally Launched Debug Process , the At Process Ter-
mination mode may not be able to stop the debug process before it exits, and in some
cases may even fail to show any post-mortem traceback at all (except as printed to stderr
in the debug process).

Similarly, when working with wxPython, PyGTK, and similar environments that include
a catch-all exception handler in C/C++ code, the At Process Termination mode will
fail to report any unexpected exceptions occurring during the main loop because those
exceptions do not actually lead to process termination.

Immediately if Appear Unhandled -- The debugger will attempt to detect unhandled
exceptions as they are raised in your debug process, making it possible to view the program
state that led to the exception and to step through subsequently reached finally clauses.
This is done by looking up the stack for exception handlers written in Python, and reporting
only exceptions for which there is no matching handler.

Because of changes in the Python implementation, this mode no longer works in
Python versions 2.7+ and 3.0+.

The Immediately if Appear Unhandled mode works well with wxPython, PyGTK, and
in most other code where unexpected exceptions either lead to program termination or are
handled by catch-all exception handlers written in C/C++ extension module code.

In some cases, Wing’s unhandled exception detector can report normal handled exceptions
that are not seen outside of the debugger. This occurs when the exceptions are handled
in C/C++ extension module code. Wing can be trained to ignore these by checking the
Ignore this exception location check box in the debugger’s Exception tool. Ignored
exceptions are still reported if they actually lead to program termination, and your selection
is remembered in your project file so only needs to be made once. Use Clear Ignored
Exceptions from the Debug menu at any time to reset the ignore list to blank.

133

Reporting Logged Exceptions

The Report Logged Exceptions in When Printed Mode preference controls whether
exceptions that are not printed but that are logged with a call to logging.exception will
be reported by the default When Printed exception reporting mode. This preference is
ignored in other exception reporting modes.

Exception Type Filters

The Never Report and Always Report preferences can be used to specify that certain
exception types should never be reported at all, or always reported regardless of whether
they are printed or logged. For example, by default Wing will never stop on SystemExit or
GeneratorExit since these occur during normal program behavior, and Wing will always
stop on AssertionError since this usually indicates a bug in code even if it is handled.

In some code, adding NameError or AttributeError to the Always Report list may help
uncover bugs; however, this may not work if these are treated as normal expected exceptions
by the authors of the code and there are too many such cases to ignore them with the
Ignore this exception location checkbox in the Exceptions tool.

12.14. Running Without Debug

Files may also be executed outside of the debugger. This can be done with any Python
code, makefiles, and any other file that is marked as executable on disk. This is done
with the Execute Current File and Execute Recent items in the Debug menu, or with
Execute Selected after right-clicking on the project view.

Files executed in this way are run in a separate process and any input or output occurs
within the OS Commands tool.

This is useful for triggering builds, executing utilities used in development, or even to launch
a program that is normally launched outside of Wing and debugged using wingdbstub.py.

Wing can also run arbitrary command lines. See the OS Commands Tool chapter for
more information on executing files or command lines from Wing.

134

Advanced Debugging Topics

This chapter collects documentation of advanced debugging techniques, including debug-
ging externally launched code, and using Wing’s debugger together with a debugger for
C/C++ code.

See also the collection of How-Tos for tips of working with specific third party libraries
and frameworks for Python.

13.1. Debugging Externally Launched Code

This section describes how to start debugging from a process that is not launched by
Wing. Examples of debug code that is launched externally include CGI scripts or web
servlets running under a web server and embedded Python scripts running inside a larger
application.

13.1.1. Importing the Debugger

The following step-by-step instructions can be used to start debugging in externally
launched code that is running on the same machine as Wing IDE:

1) Copy wingdbstub.py from the Wing IDE installation directory into the same
directory as your debug program.

2) In some cases, you will also need to copy the file wingdebugpw from your User
Settings Directory into the same directory as wingdbstub.py. This is needed
when running the debug process as a different user or in a way that prevents
the debug process from reading the wingdebugpw file from within your User
Settings Directory.

135

136

3) At the point where you want debugging to begin, insert the following source
code: import wingdbstub Depending on your code base, you may need to be
cautious about whether this statement is reached by multiple processes. If this
happens, the first process will connect to Wing and the second one will fail to
connect and continue running without debug. If you are debugging code in an
embedded Python instance, see the notes in Debugging Embedded Python
Code.

4) Make sure the Wing IDE preference Enable Passive Listen is turned on, to
allow connection from external processes.

5) Set any required breakpoints in your Python source code.

6) Initiate the debug program from outside Wing IDE, for example with a page
load in your web browser, if the program is a web app. You should see the
status indicator in the lower left of the main Wing IDE window to yellow, red,
or green, as described in Debugger Status. Make sure that you are running
the Python interpreter without the -0 option. The debugger will not work
when optimization is turned on.

7) The debugger should stop at the first breakpoint or exception found. If no
breakpoint or exception is reached, the program will run to completion, or you
can use the Pause command in the Debug menu.

Enabling Process Termination
In some cases, you may wish to enable termination of debug processes that were
launched from outside of Wing IDE. By default, Wing recognizes externally launched
processes and disables process termination in these cases unless the Kill Externally
Launched preference is enabled.

If you have problems making this work, try setting kLogFile variable in wingdbstub.py
for log additional diagnostic information.

Behavior on Failure to Attach to IDE

Whenever the debugger cannot contact Wing IDE (for example, if the IDE is not
running or is listening on a different port), the debug program will be run without
debugging. This is useful since debug-enabled CGls and other programs should work
normally when Wing is not present. However, you can force the debug process to
exit in this case by setting the kExitOnFailure flag in wingdbstub.py. To at-
tach to processes started without debug, see Attaching (only available in Wing IDE
Professional).

137
13.1.2. Debug Server Configuration

In some cases you may also need to alter other preset configuration values at the start
of wingdbstub.py. These values completely replace any values set in Wing’s Project or
File Properties, which are relevant only when the debug program is launched from within
Wing. The following options are available:

e The debugger can be disabled entirely with kWwingDebugDisabled=1. This is equiva-
lent to setting the WINGDB_DISABLED environment variable before launching the debug
program.

e Set kWingHostPort to specify the network location of Wing IDE, so the debugger
can connect to it when it starts. This is equivalent to setting the WINGDB_HOSTPORT
environment variable before launching the debug program. The default value is 1o-
calhost:50005. See section Remote Debugging for details if you need to change
this value.

e You can control whether or not the debugger’s internal error messages are written
to a log file by setting kLogFile. Use <stdout>, <stderr>, or a file name. If the
given file doesn’t exist, it is created if possible. Note that using <stderr> may
cause problems on Windows if the debug process is not running in a console. This
is equivalent to setting the WINGDB_LOGFILE environment variable before launching
the debug program (use a value of - to turn off logging to file).

e Set kEmbedded to 1 when debugging embedded scripts. In this case, the debug con-
nection will be maintained across script invocations instead of closing the debug
connection when the script finishes. When this is set to 1, you may need to call
wingdbstub.debugger.ProgramQuit () before your program exits, or before it dis-
cards an instance of Python, in order to cleanly close the debug connection to the
IDE. This is equivalent to setting the environment variable WINGDB_EMBEDDED.

e Set kAttachPort to define the default port at which the debug process will listen
for requests to attach (available in Wing IDE Professional only). This is equivalent
to setting the WINGDB_ATTACHPORT environment variable before launching the debug
program. If this value is less than 0, the debug process will never listen for attach
requests. If it is greater than or equal to 0, this value is used when the debug process
is running without being in contact with Wing IDE, as might happen if it initially
fails to connect to the above-defined host and port, or if the IDE detaches from the
process for a period of time. For Wing IDE Professional, this is described in more
detail in section Attaching and Detaching.

138

e Set kPWFilePath and kPWFileName to define the search path and file name
used to find a wingdebugpw file for the debugger. The environment variables
WINGDB_PWFILEPATH and WINGDB_PWFILENAME will override these settings. The file
path should be a Python list of strings if set in wingdbstub.py or a list of directories
separated by the path separator (os.pathsep) when sent by environment variable.
The string $<winguserprofile> may be used to specify Wing’s User Settings Di-
rectory for the user that the debug process is running as. The password file name is
usually wingdebugpw but may be changed in cases where this naming is inconvenient.

e Optionally, set WINGHOME, which is the Wing IDE installation directory (or on OS X
Contents/Mac0S within Wing’s .app folder). This is set up during installation, but
may need to be altered if you are running Wing from source or copied the debugger
binaries over from another machine.

Setting any of the above-described environment variable equivalents will override the value
given in the wingdbstub.py file.

13.1.3. Debugger API

A simple API can be used to control debugging more closely, once you have imported
wingdbstub.py the first time, as was describe. This is useful in cases where you want to
be able to start and stop debugging on the fly several times during a debug run, for example
to avoid debug overhead except within a small sub-section of your code. It can also be
useful in embedded scripting environments, particularly in those that alter the thread state
or discard and recreate the Python instance across invocations.

To use the API, you must first onfigure and import wingdbstub.py as described in section
Importing the Debugger.

High-Level API

The wingdbstub.Ensure(require_connection=1, require_debugger=1) function may
be used to ensure the debugger is running and connected to the IDE. If re-
quire_connection is true, ValueError will be raised if a connection to the IDE cannot
be made. If require_debugger is true, ValueError will be raised if the debugger binaries
cannot be found or the debugger cannot be started.

Low-Level API

After importing wingdbstub, the following calls may be made on wingdbstub.debugger
to control the debugger:

139

e StopDebug() - Stop debugging completely and disconnect from Wing IDE. The debug
program continues executing in non-debug mode and must be restarted to resume
debugging.

e StartDebug(stophere=0, connect=1) -- Start debugging, optionally connecting
back to the IDE and/or stopping immediately afterwards.

e Break() -- This pauses the free-running debug program on the current line, as if at
a breakpoint.

e ProgramQuit () - This must be called before the debug program is