
Introduction for New Users
Wing IDE Professional

Wingware

www.wingware.com

Version 4.1.13
May 3, 2013

2

Thanks for trying Wing IDE Professional! To get started, please choose from the following:

• For a guided tour try the tutorial.

• To try Wing on your own, see the quick start guide.

• For hints on using Wing with GUI or Web development frameworks, also see the
relevant How-Tos

Contents

Wing IDE Tutorial

1.1. Tutorial: Getting Started

1.2. Tutorial: Getting Around Wing IDE

Configuration Options

1.3. Tutorial: Check your Python Integration

1.4. Tutorial: Set Up a Project

Browsing Files

Shared Project Files

1.5. Tutorial: Setting Python Path

1.6. Tutorial: Introduction to the Editor

A Note on Proxies

1.7. Tutorial: Debugging

1.7.1. Tutorial: Debug I/O

1.7.2. Tutorial: Debug Process Exception Reporting

Advanced Options

1.7.3. Tutorial: Command Line Power Debugging

1.7.4. Tutorial: Watching Debug Data

Watching Values

Watching Expressions

1.7.5. Tutorial: Other Debugger Features

1.8. Tutorial: Source Browser

1.9. Tutorial: Searching

http://wingware.com/wingide

3

Toolbar Search

Keyboard-driven Search

Search Tool

Replacing

Wildcard Searching

Regular Expression Search

Search in Files Tool

File Sets

Searching Disk

Multi-File Replace

1.10. Tutorial: Source Assistant with Classes

1.11. Tutorial: Other IDE Features

1.12. Tutorial: Further Reading

Copyright (c) 1999-2012 by Wingware. All rights reserved.:

Wingware

P.O. Box 400527

Cambridge, MA 02140-0006

United States of America

4

Wing IDE Tutorial

This document introduces Wing IDE by taking you through its feature set with a small
coding example. For a faster but less informative introduction, see the Wing IDE Quick
Start Guide.

If you are new to programming, you may want to check out the book Python Program-
ming Fundamentals and accompanying screen casts, which use Wing IDE 101 to teach
programming with Python.

To get started, press the Next (down arrow) icon in the toolbar immediately above this
page.

1.1. Tutorial: Getting Started

In addition to installing Wing IDE, you also need to take the following steps before
starting the tutorial:

(1) Install Python

To get Python, download it now from python.org or wingware.com. This tutorial will work
with Python version 2.0 or later.

If the above links don’t work or bring up the wrong browser, you may need to define the
BROWSER environment variable to the name of the browser executable you wish to use (for
example: mozilla) and restart Wing IDE.

On Linux/Unix, you can also add a browser command line to your URL Display Com-
mands preference. This is recommended only if your preferred browser doesn’t work when
specified with the BROWSER environment variable. Setting BROWSER will generally do a
better job reusing browser instances and creating and raising browser windows as needed.

(2) Copy the Tutorial Directory

5

http://knuth.luther.edu/~leekent/IntroToComputing/
http://knuth.luther.edu/~leekent/IntroToComputing/
http://www.python.org/download/
http://wingware.com/downloads/wingide/python

6

Next, copy the entire tutorial directory out of your Wing IDE installation to a location
where you will have write access to the files in it. You can do this manually or use the
following link to execute a script that will prompt you for a target directory to copy the
tutorial info: Copy Tutorial Now

We welcome feedback and bug reports, both of which can be submitted directly from
Wing IDE using the Submit Feedback and Submit Bug Report items in the Help
menu, or by emailing us at support at wingware.com.

To get to the next page in the tutorial, use the Next Page icon shown in the toolbar just
above this text.

1.2. Tutorial: Getting Around Wing IDE

Let’s start with some basics that will help you get around Wing IDE while working with
this tutorial.

Wing IDE’s user interface is divided into an editor area and two tool boxes separated
by draggable dividers. Use the option menus in each area to create splits or move tools
around. The Previous/Next Visit History buttons and the Next Document, Previous

Document and Most Recent Document items in the Window menu can be used to switch
quickly between documents in the editor area, such as this tutorial and the source files
you’ll be working with later.

mailto:support@wingware.com

7

Configuration Options

There are many configuration options available for customizing the user interface. Some
of these are described below. Once you make changes to any of these, your settings will be
remembered in your project file and preferences.

Editor Personality -- If you are used to another editor such as Visual Studio, VI or Vim,

8

Emacs, or Brief, you may want to put Wing into a more familiar keyboard mode using the
Personality preference. Be sure to click OK or Apply so the changes take effect.

Tab Key Action -- In Python code, the tab key in Wing defaults to indenting a selected
region or the current line to the “correct” computed indent level, to the extent that Wing
can determine this from context. In non-Python files, the tab key increases indent one
level. To change this, use the Tab Key Action preference.

Minimizing Tool Boxes -- By clicking on an already-active tool tab in one of the tool
boxes, the entire area will be minimized down so that only the tabs for the area are visible.
Clicking again on any tab will restore the tool box to its previous size. Or, use F1 and
F2 to toggle the state of the two tool boxes. This is a convenient way to increase space
available to the editor or other tool box.

Shift-F2 can also be used to maximize the editor area temporarily, hiding the tools and
toolbar until Shift-F2 is pressed again.

Splitting Panels -- The editor area and tool boxes can be split into multiple sub-panels
by using the editor and tool box option menus. These can be changed with the editor
options menu, which is accessed either by clicking on the dropdown icon in the top right
of the editor area, or by right-clicking on the notebook tabs. Note that when splitting the
editor area, each new split will show the same files as all others; this allows for editing
multiple parts of the same file.

Splitting your editor area or creating a separate Help tool window may make it much

easier to get around this tutorial.

The number of splits shown by default in tool boxes will vary depending on the size of your
monitor.

Moving and Adding Tools -- Tools can be moved among the tool boxes or out to
separate windows by using the tool box option menu. Additional instances of any tool can
be created from the tool box option menu or in a separate window from the Window menu.

Adding Document Windows -- Additional document windows can also be created from
the Window menu. Each separate document window contains its own set of open files.

Other Options -- Source Code Font/Size and Display Font/Size can be altered.
The toolbar’s appearance can be changed using the Toolbar Size and Toolbar Style
preferences. The tool boxes can be moved from right to left or bottom to top by right-
clicking on the tool tabs. The editor option menu, accessed by clicking on the drop down

9

indicator at top right of the editor area, allows selecting between using notebook tabs or a
popup menu to navigate between open editors.

For more information on adjusting the user interface to your needs, see the Customization
chapter of the manual.

1.3. Tutorial: Check your Python Integration

Before starting with some code, let’s make sure that Wing has succeeded in finding your
Python installation (the latest version is preferred if you have multiple versions installed).
To check this, bring up the Python Shell tool. After a moment, it should show you the
Python command prompt like this:

If this is not working, or the wrong version of Python is being used, you can point Wing
in the right direction with the Python Executable setting in Project Properties,
available from the toolbar and Project menu. You will need to Restart Shell from
Options in the Python Shell tool after altering this property.

Once the shell works, copy/paste or drag and drop these lines of Python code into it:

for i in range(0, 10):

print(’ ’ * (10 - i) + ’*’ * i)

This should print a triangle as follows:

10

Notice that the shell removes common leading white space when blocks of code are copied
into it. This is useful when trying out code from source files.

Now type something in the shell, such as:

import sys

sys.getrefcount(i)

Note that Wing offers auto-completion as you type and shows call signature and documen-
tation information in the Source Assistant.

You can create as many instances of the Python Shell tool as you wish; each one runs in
its own private process space that is kept totally separate from Wing IDE and your debug
process.

1.4. Tutorial: Set Up a Project

Now we’re ready to get started with some coding. The first step in working with Wing
IDE is to set up a project file so that Wing can find and analyze your source code and
store your work across sessions.

Wing starts up initially with the Default Project. You can use that project to start your
work on the tutorial. If you would prefer to create a new project instead, use New Project

in the Project menu. Note: After doing this, you will need to open up the tutorial again
from the Help menu, since Wing closes open documents when projects are closed.

11

To make it easier to work on source code and read this tutorial at the same time, you may
want to right click on the editor tab area and select Split Side by Side.

Next, add your source files to the project. You can do this with the Add items in the
Project menu, or by right clicking on the Project tool. For the purposes of this tutorial,
use Add Directory to add all files in your copy of the tutorials directory. If you haven’t
already copied the tutorials directory from your Wing IDE installation, please do so now
as described in Tutorial: Getting Started.

Once your files have been added, save the project to disk with Save Project or Save

Project As in the Project menu. Use tutorial.wpr as the project file name and place
it in the tutorial directory that you created earlier.

Browsing Files

Files in your project can be opened by double clicking or right-clicking on the file list in
the Project tool. When the Follow Selection item in the Options menu at top right of
the Project view is checked, Wing will also display the source code for files that are single
clicked. However, these files are opened in a transient mode so that they are automatically
closed again when another file is brought up. This mechanism helps to prevent huge
numbers of files being opened when stepping in the debugger or browsing files.

This mode in which a file is opened is indicated with the stick pin icon in the top right of
the editor area:

-- Indicates the file is opened permanently until it is closed explicitly by the user.

-- Indicates that the file is opened transiently and will auto-close except if it is edited.

Clicking on the pin icon toggles between the available modes. Right-clicking on the icon
displays a menu of recently visited files. Note that this contains both transient and sticky
files, while the Recent list in the File menu contains only sticky files.

The number of transient editors to keep open, in addition to those that are visible is set
with the Transient Threshold preference.

Note that you can alter the project display to sort files into a deep hierarchy, a flattened
hierarchy, or by mime type. These are available from the Options menu in the project
view.

12

Shared Project Files

If you plan to use Wing IDE in a development team that shares project files in a revision
control system such as CVS, Subversion, or Perforce SCM, be sure to change your project
to Shared using the Project Type property. This separates the project into two files:
*.wpr with shared project data and *.wpu with user-specific data. Check only the *.wpr

file into revision control to avoid revision conflicts resulting from concurrent edits.

1.5. Tutorial: Setting Python Path

Whenever your Python source depends on PYTHONPATH (either set externally or by altering
sys.path internally), you will also need to tell Wing about your path.

This value can be entered from the Project Properties dialog, which is accessible from
the Project menu and the toolbar:

For this tutorial, you will at least need a PYTHONPATH that includes the subdir sub-directory
of your tutorials directory as shown in the figure above. This contains a module used as
part of the first coding example.

Note that in the screen shot above the PYTHONPATH has been set with the full path to
the directory subdir. This is strongly recommended because it avoids potential problems

13

finding source code when the starting directory is ambiguous, both for source code analysis
purposes and in Wing’s debugger. A partial path can be specified, but Wing will issue a
warning explaining why this is a bad idea.

The configuration is used here for illustration purposes. You could easily run the example
code without a PYTHONPATH by moving the path_example.py file to the same location as
the example scripts, or by placing it into your Python installation’s site-packages directory.
Either of these allows Python to find the modules without altered PYTHONPATH.

1.6. Tutorial: Introduction to the Editor

By now Wing will have found and analysed the tutorial examples, and all the modules that
are imported and used by them. This analysis process runs in the background and allows
Wing to present you with better support during inspection and editing of code. With
larger code bases, you may notice the CPU load from this process, but with this tutorial
the analysis will happen instantaneously after the project has been configured.

The editor’s auto-completer and Source Assistant are two of the most important analysis-
driven tools in Wing IDE.

To try these out, double click or right-click on the file example1.py in the project panel.
Also bring the Source Assistant tool to front. This is where Wing IDE shows documen-
tation, call signature, and other information as you move around your source code or work
within other tools, so it’s a good idea to keep it visible while editing.

Scroll down to the bottom of example1.py and enter the following code by typing (not
pasting) it into the file:

news = Re

Notice that Wing shows you a popup menu of completion options as you type. You can
press tab to enter the currently selected value, or scroll around in the list with the arrow
keys. When you typed “news” this completer wasn’t helpful because you had not yet
defined news as a symbol in your source. However, once you move on to type “ = Re“,
Wing will display another completion list with ReadPythonNews highlighted. Notice that
the Source Assistant updates to show call information for that function, or for whatever
value is selected in the auto-completer:

14

Next, press the Tab key to enter the completion of ReadPythonNews and enter (. You
should now have this code in your editor:

news = ReadPythonNews(

If you are used to using the Enter key for auto-completion, add it to the Completion

Keys preference.

Duplicate substitution definition name: “note”.

Type Get to start entering the first argument to ReadPythonNews. You will see the Source
Assistant alters its display to highlight the first argument in the call information for Read-
PythonNews and adds information on the argument’s completion value:

15

The docstring for ReadPythonNews is temporarily hidden to conserve screen space (but
this can be toggled with the Show docstring during completion option in the context
menu obtained by right-clicking on the surface of the Source Assistant).

Now continue entering the rest of the source line so you have the following almost-complete
line of source code (the trailing) is missing):

news = ReadPythonNews(GetItemCount()

Press enter a few times. Note that Wing IDE auto-indents the subsequent lines and adds
red error indicators under them shortly after you stop typing. This indicates that there is
a syntax error in your code:

16

Once you correct the line and complete it by typing the final), the error indicators will be
removed. You should now have this complete line of code in your file:

news = ReadPythonNews(GetItemCount())

The Source Assistant also updates as you move your insertion caret around the editor. For
example, try moving onto GetItemCount. Also notice that the blue links in the Source
Assistant can be used to jump to the points of definition of each symbol listed there. For
variables, the link after Symbol: goes to the point of definition of that variable, while any
links after Likely Type: go to the point of definition of that data type (these are the
same if the symbol is a function, method, or class; we’ll try the Source Assistant with more
interesting code later).

To play around with these tools a bit more, enter the following two additional lines of code:

PrintAsText(news)

PrintAsHTML(news)

At this point you have a complete program that can be run in the debugger. There are
many other editor features worth learning, but we’ll get back to those later in this tutorial.

A Note on Proxies

If you are behind a firewall and use a web proxy, you may need to alter the tutorial before
it will work. In particular, set up a proxy mapping like this:

17

proxies = {’http’: ’http://192.168.3.7:3128’}

And then add a second parameter to the urllib call that obtains the news in ReadPython-

News so it looks like this:

svc = urllib.urlopen(“http://www.python.org/channews.dat”, proxies=proxies)

You will of course need to set the http proxy url according to your local network’s config-
uration. See also how to determine proxy settings.

1.7. Tutorial: Debugging

In case you haven’t already figured it out, the example1.py program you have created
connects to python.org via HTTP, reads and parses the Python-related news feed that is
hosted there, and then prints the most recent five items as text and HTML. Don’t worry if
you don’t have an internet connection on your machine; the script has canned data it will
use when it cannot connect to python.org.

To start debugging, set a breakpoint on the line that reads return 5 in the GetItemCount
function. This can be done by clicking on the line and selecting the Break toolbar item,
or by clicking on the dark margin to the left of the line. The breakpoint should appear as
a filled red circle:

Next start the debugger with the green arrow icon in the toolbar or the Start/Continue

item in the Debug menu. Wing will show the Debug Properties dialog with the properties
that will be used during the debug run. Just ignore this for now, uncheck the Show this

dialog before each debug run checkbox at the bottom, and press OK.

Wing will run to the breakpoint and stop, placing a red indicator on the line. Notice that
the toolbar changes to include additional debug tools, as shown below:

http://www.python.org/channews.dat
http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using

18

Your display may vary depending on how you have configured the Toolbar Size and
Toolbar Style preferences. Note that Wing displays tooltips explaining what the tools
do when you mouse over them.

Now you can inspect the program state at that point with the Stack Data tool and by
going up and down the stack from the toolbar or Debug menu. The stack can also be
viewed as a list using the Call Stack tool.

Notice that the Debug status indicator in the lower left of Wing’s main window changes
color depending on the state of the debug process. Mouse over the indicator to see detailed
status in a tooltip:

19

Next, try stepping out to the enclosing call to ReadPythonNews. In this particular context,
you can achieve this in a single click with the Step Out toolbar icon or Debug menu item
(two clicks on Step Over also work). This is a good function to step through in order to
familiarize yourself with the basic debugger features covered above.

1.7.1. Tutorial: Debug I/O

Before continuing any further in the debugger, bring up the Debug I/O tool so you can
watch the subsequent output from the program. This is also where keyboard input takes
place in debug code that requests for it.

Once you step over the line PrintAsText(news) you should see output appear as follows:

20

Note that you can also configure Wing to use an external console from the Options menu
in the Debug I/O tool. This is useful for code that depends on details of the Debug I/O
environment (such as cursor control with special output characters).

1.7.2. Tutorial: Debug Process Exception Reporting

Wing’s debugger reports any exceptions that would be printed when running the code
outside of the debugger.

Try this out by continuing execution of the debug process with the Debug toolbar item or
Start / Continue item in the Debug menu.

Wing will stop on an incorrect line of code in PrintAsHTML and will report the error in the
Exceptions tool:

21

Notice that this tool highlights the current stack frame and that you can click on frames
to navigate the exception backtrace. Whenever you are stopped on an exception, the
Debugger Status indicator in the lower left of Wing’s main window turns red.

Advanced Options

Wing’s debugger provides several exception handling modes, which differ in how they
determine which exceptions should be reported. It is also possible to add specific exception
types to always report or never report. This is described in more detail in Managing
Exceptions. Most users will not need to alter these options, but being aware of them is
potentially useful in advanced debugging scenarios.

1.7.3. Tutorial: Command Line Power Debugging

Wing IDE Professional’s Debug Probe provides a powerful way to find and fix complex
bugs. This works much like the Python Shell but lets you interact directly with your paused
debug program, in the context of the current stack frame:

22

Try it out from the point of exception reached earlier by typing this:

news[0][0]

This will print the date of the first news item:

Next, try this:

news[0][0] = ’2004-06-15’

This is one way to change program state while debugging, which can sometimes be useful
when testing out code that will go into a bug fix. Try this now:

PrintAsText(news)

This executes the function call and prints its output to the Debug Probe. Note that the
Debug I/O tool is not used for input or output whenever it results from commands typed
in the Debug Probe. All Debug I/O is temporarily redirected here.

23

Note that Wing offers auto-completion as you type and shows call signature and documen-
tation information in the Source Assistant.

Here is another possibility. Copy/paste or drag and drop this block of code to the Debug
Probe:

def PrintAsHTML(news):

for date, event, url in news:

print(’<p><i>%s</i> %s</p>’ % (date, url, event))

This actually replaces the buggy definition of PrintAsHTML that’s in the example1.py

source file, so that you can now execute it without errors as follows:

PrintAsHTML(news)

This can be useful in designing bug fixes when the fix depends on lots of program state, or
happens in a context that is hard or time-consuming to reproduce in the debugger: Quick
interactive trial and error replaces multiple edit/debug cycles.

1.7.4. Tutorial: Watching Debug Data

Another useful feature when working through complex bugs is Wing’s ability to watch
debug data values in a variety of ways. This is done with the Watch tool:

24

Watching Values

While still at the same exception in PrintAsHTML, right-click on the locals value news in
the Stack Data tool. This will present you with the following options for watching the
value over time:

Watch by Symbolic Path -- This causes Wing to look for the symbolic name news in the
current stack frame whenever you are debugging. When you select this item, the Watch
panel will be displayed with one item in it that reads:

news <list 0x40401eec>

(the object id will of course vary)

This is useful for quick access to values without digging through a long locals or globals
list in the Stack Data view.

Since the watch makes sense across debug sessions, it will be remembered in the Watch
tool until you clear it.

Watch by Direct Reference -- This causes Wing to keep a reference to this particular
object instance (a list). It will be shown in the Watch tool as long as it exists. If the
reference count for the object instance goes to zero, Wing will report <value not found>.

This is useful for watching a particular object while stepping through portions of code that
may not hold a reference to it, or from which it is difficult to reach the referenced instance
data.

Since object references aren’t meaningful across debug sessions, these entries will be re-
moved from the Watch tool as soon as the debug process terminates.

Watch by Parent Slot -- This combines the above two modes by keeping a reference
to the parent of the selected value and looking up the sub-part of the value by symbolic
name.

If you try this on event in locals, you are watching the value event within the particular
locals dictionary, rather than event in the current stack frame.

This technique is more useful when working in object-oriented code where it can be used
to watch particular attributes within a specific object instance.

Since the parent is tracked by object reference, these entries are also removed from the
Watch tool as soon as the debug process ends its life.

25

Watch by Module Slot -- This option can be used to watch values within modules, by
looking up the module by name in sys.modules and tracking the value symbolically. It is
only available when right-clicking on values in the Modules tool, which will be discussed
later.

Since these are meaningful across debug sessions, values watched by module will be retained
in the Watch tool until they are removed by the user.

Watching Expressions

It is also possible to watch the value of any Python expression in the Watch panel. Just
click on an empty part of the Watching column and type in the expression you wish to
watch:

Try this now, while still stopped at the exception in PrintAsHTML, by entering this:

news[-1]

This will show the last item of news as long as there is one, or <undefined> or <error

evaluating> if the value cannot be determined.

Expressions are remembered in the Watch tool across debug sessions, until they are removed
by the user.

1.7.5. Tutorial: Other Debugger Features

Before moving on to the rest of the IDE’s features, here are a few highlights of the debug-
ger’s other capabilities that are worth knowing about from the start:

26

• Main Debug File -- You can specify one file in your project as the main entry point
for debugging. When this is set, debugging will always start there unless you use the
Debug Current File item in the Debug menu. To set a main debug file use Set

Current as Main Debug File in the Debug menu, right click on the Project tool
and select Set as Main Debug File, or use the Main Debug File property in the
Debug tab of Project Properties. Whether or not you set a main debug file depends
on the nature of your project.

• File Properties -- Each file in your project can override or modify your project-wide
debug properties. This is useful in projects with multiple debug entry points. File
properties can also be used to specify command line arguments for debugging. They
are accessed from the Current File Properties item in the Source menu or by
using Properties in the editor or project (right-click) context menus:

• Modules Data View -- By default, Wing filters out modules and some other data
types from the values shown in the Stack Data tool. In some cases, it is useful to
view values stored in modules. This can be done with the Modules tool, which is
simply a list of all modules found in sys.modules:

27

• Conditional Breakpoints -- Use the Debug menu’s Breakpoint Options group
or right click on the breakpoints margin to set a conditional breakpoint. These can
be very useful if you need to stop in code before an error occurs, so that you can
step through the code that leads up to the error. Conditionals can be any Python
expression, but beware of expressions that alter your program state as a side-effect.
Note that Wing will always stop on a conditional breakpoint when an exception is
raised by the conditional expression itself.

• Breakpoint Manager -- The Breakpoints tool accessed from the Tools menu
shows a list of all defined breakpoints and allows enabling/disabling, editing the
breakpoint conditional, setting an ignore count, and inspecting the number of times
a breakpoint has been reached when a debug process is active.

• Remote Debugging -- Wing can debug processes that are running under a web
server or web development framework, or that get launched from the command line
and not from Wing. This is beyond the scope of this tutorial, and is described in
Debugging Externally Launched Code and in the the relevant How-To guides.

1.8. Tutorial: Source Browser

Wing IDE Professional includes a Source Browser that can be used to inspect and
navigate the module and class structure of your source code.

28

By default, the browser will display classes, methods, attributes, functions, and variables
defined in the currently displayed source editor (if any). The popup menu at the top left
of the source browser can be used to alter the display to include all classes or all modules
in the project. The Options menu in the top right allows filtering by origin, accessibility,
and type of source symbols. The Options menu also allows sorting the view alphabetically,
by type, or in the order that symbols occur in the source file.

As with the Project display, double clicking or right-clicking on items in the Source Browser
opens them into an editor. The Follow Selection option appears here as well (in the
Options menu) and when enabled opens transient editors in order to show the points of
definition for symbols selected on the Source Browser by single-clicking or via keyboard
navigation.

The Source Assistant is integrated with the source browser, and will update its content
as you move around the source browser tree.

29

1.9. Tutorial: Searching

Wing IDE provides several different interfaces for searching your code. Which you use
depends on your task.

Toolbar Search

A quick way to search through the current editor is to enter your search string in the area
provided in the toolbar:

If you enter only lower case the search will be case-insensitive. Entering one or more
upper-case letter causes the search to become case-sensitive.

Try this now in example1.py: Type GetItem in the toolbar search area and Wing will
immediately, starting with the first letter typed, search for matching text in the editor.
Notice that if you press the Enter key, Wing will move on to the next match, wrapping
around to the top of the file if necessary.

Toolbar-based searches always go forward (downward) in the file from the current cursor
position.

Keyboard-driven Search

If you prefer to search without your fingers leaving the keyboard, use the key bindings
given next to the Mini-search items in the Edit menu (the bindinges vary by keyboard
personality).

From here, you can initiate searching forward and backward in the current editor, optionally
using the current selection in the editor as the search string. You can also initiate replace
operations.

Try this in the example1.py file: If using the default editor mode, press the Ctrl-U. If
you are using emacs mode, press Ctrl-S. For others, refer to the Mini-search group in
the Edit menu.

This will display an entry area at the bottom of the IDE window and will place focus there:

30

Continue by typing G, then e, then t. Notice how Wing searches incrementally with each
keypress. This lets you type only as much as you need to find the source code you are
looking for.

While the mini-search area is still active, try pressing the same key combination you used
to display it again (Ctrl-U or Ctrl-S in emacs mode) and Wing will search for the next
matching occurrence. Note that if no match is found Failed Search will be displayed.
However, pressing the mini search key combination again will wrap around and start search-
ing again at the top of the file.

As in the toolbar search, typing lower case letters results in case-insensitive search, and
using one or more upper case letters results in case-sensitive search.

Search direction can be changed during searching by pressing the key bindings assigned to
forward and backward mini-search. You can exit from the search by pressing the Esc key
or Ctrl-G in emacs mode.

The regular expression based search options found in the Mini-search menu group work
similarly but expect regular expressions for the search criteria (see below).

Keyboard-driven mini-replace also works similarly, except that you will be presented
with two entry areas, one for your search string and one for the replace string. Use
Query/Replace to be prompted for Y and N for each replace location, and Replace String

to replace all matches globally in the file.

Search Tool

The Search tool provides a familiar GUI-based search and replace tool for operating on
the current editor. Key bindings for operations on this tool are given in the Search and

Replace group in the Edit menu.

Searches may span the whole file or be constrained to the current selection, can be case
sensitive or insensitive, and may optionally be constrained to matching only whole words.

By default, searching is incremental while you type your search string. To disable this,
uncheck Incremental in the Options menu.

31

Replacing

When the Show Replace item in Options is activated, Wing will show an area for entering
a replace string and adds Replace and Replace All buttons to the Search tool:

Try replacing example1.py with search string PrintAs and replace string OutputAs.

Select the first result match and then Replace repeatedly. One search match will be
replaced at a time. Search will occur again after each replace automatically unless you
turn off the Find After Replace option. Changes can be undone in the editor, one at a
time. Do this now to avoid saving this replace operation.

Next, try Replace All instead. Wing will simply replace all occurrences in the file at the
same time. When this is done, a single undo in the editor will cancel the entire replace
operation.

Wildcard Searching

By default, Wing searches for straight text matches on the strings you type. Wildcard and
regular expression searching are also available in the Options menu.

The easier one of these to learn is wildcard searching, which allows you to specify a search
string that contains *, ?, or ranges of characters specified within [and]. This is the
same syntax supported by the Python glob module and is described in more detail in the
Wildcard Search Syntax manual page.

Try a wildcard search now by selecting Wild Card from the Options menu and making
sure example1.py is your current editor. Set the search string to PrintAs*(. This should
display find matches, all occurrences of the string PrintAs, followed by zero or more
characters, followed by (:

32

Also try searching on PrintAs*[A-Z](with the Case Sensitive search option turned
on. This matches all strings starting with PrintAs followed by zero or more characters,
followed by any capital letter, followed by (.

Finally, try PrintAsT???, which will match any string starting with PrintAsT followed by
any three characters (? matches any single character).

Wild card searching can be very useful for finding related source symbols all at once.

Regular Expression Search

Regular expressions can also be used for searching. These are most useful for complicated
search tasks, such as finding all calls to a particular function that occur as part of an
assignment statement.

For example, open\(newscache()?,.*\) matches only calls to the function open where
the first argument is named newscache and there are at least two parameters. If you try
this with example1.py, you should get exactly one search match:

33

The details of regular expression syntax and usage can be very complicated, so this tutorial
does not cover them. For that, see the Regular Expression Syntax documentation in the
Python manual.

Search in Files Tool

The Search in Files tool is the most powerful search option available in Wing IDE. It
supports multi-file batch search of the disk, project, open editors, or other sets of files. It
can also search using wildcards and can do regular expression based search/replace.

http://wingware.com/psupport/python-manual/2.3/lib/re-syntax.html

34

Before worrying about the details, try a simple batch search on the example1.py file. Select
Current File from the Look in selector on the search manager (these are the defaults).
Then enter PrintAs into the search area.

Wing will start searching immediately, restarting the search whenever you alter the search
string or make other changes that affect the result set. When you are done, you should see
results like those shown in the screen shot above. Click on the first result line to select it.
This will also display example1.py with the corresponding search match highlighted.

You can use the forward/backward arrows in the Search in Files manager to traverse your
results.

File Sets

Next, change the Look in selector to All Files in Project and change your search
string to HTML. This works the same way as searching a single file, but lists the results for
all files in your project. You can also search all currently open files in this way.

In many cases, searching is better constrained to a subset of files in your projects. For
example, only Python files. This can be done with by selecting Python Files in the
Filter selector. You can also define other file sets using the Create/Edit File Sets...

item in the Filter Selector. This will display the File Sets preference:

35

Each file set has a name and a list of include and exclude specifications. Each of these
specifications can be applied to the file name, directory name, or the file’s MIME type. A
simple example would be to specify *.pas wildcard for matching Pascal files by name, or
using the text/html mime type for all HTML files.

Searching Disk

Wing can also search directly on disk. Try this by typing a directory path in the Look in

area. Assuming you haven’t changed the search string, this should search for HTML in all
text files in that directory.

Disk search can also be recursive, in which case Wing searches all sub-directories as well.
This is done by selecting a directory in the Look in scope selector and checking Recursive

Directory Search in the Options menu.

You can alter the format of the result list with the Show Line Numbers item and Result

File Name group in the Options Selector. The Option Selector contains various other
search options as well.

Note that searching Project Files is usually faster than searching a directory structure
because the set of files is precomputed.

Multi-File Replace

When working with multiple files in the result set, Wing will by default open each changed
file into an editor, whether or not it is already open. This allows you to undo changes by
not saving files or by issuing Undo within each editor.

An alternate replace mode is also available from the Options menu. If you check the Re-

place Operates on Disk item, Wing will change files directly on disk instead of opening

36

editors into the IDE. This can be much faster but is not recommended unless you have a
revision control system that can get you out of hot water when mistakes are made.

Note that even when operating directly on disk, Wing will replace changes in already-open
editors only within the IDE. This avoids creating two versions of a file if there are already
edits in the IDE’s copy. We recommend closing all editors when working in Replace

Operates on Disk mode, or select Save All from the file menu immediately after each
replace operation. This avoids losing parts of a replace, which might lead to inconsistent
application of the replace operation to the files in your source base.

1.10. Tutorial: Source Assistant with Classes

The earlier examples of the Source Assistant in action within example1.py didn’t show
some of its features because there are no classes in that file. Let’s revisit it now with
example2.py from your tutorial directory. Move the insertion cursor to the definition of
the end_pre method in MyHTMLParser and place it on the word end_pre. You should see
the following in the Source Assistant:

The Source Assistant also displays information about inherited classes when clicking on
class names. For example, clicking on self.obj in the constructor (__init__()) of An-

otherClass will display this:

Helping Wing’s Analyzer: Notice the statement that reads isinstance(obj, My-

HTMLParser) at the top of AnotherClass.__init__() in example2.py: This tells Wing’s
source analysis engine the type of obj. Python’s design makes exhaustive analysis of
object-oriented code difficult, but since type information is propagated by inference to

37

other values (such as self.obj in this case), fairly few isinstance hints can go a long
way to improving Wing’s ability to show useful information in the auto-completer, Source
Assistant, and other tools.

Since Wing’s analysis engine ignores conditionals in code, the following can be used in a
case where the isinstance would add a circular import bug to program execution:

if 0:

import mymodule

isinstance(myvalue, mymodule.MyClass)

1.11. Tutorial: Other IDE Features

There are a number of other features available in the IDE that are worth noting:

Source Index -- The top of the editor area displays a series of popup menus that act as
an index into Python source files. Select from them to navigate around your source file.

Try this out by opening example2.py from your tutorial directory. If you place the cursor
on the line that reads print("nested2"), you should see the following in the source index
area:

Each subsequent menu lists the symbols available within the preceding nested context.

If you have turned off Show Notebook Tabs in the Editor Options Menu, the file selector
menu will be prepended as follows:

Goto-Definition -- There are a number of ways to navigate to the point of definition of
symbols in your source code. One is to right-click on the symbol and select Goto Defi-

nition. Another is to move the insertion cursor to the symbol and select Goto Selected

Symbol Defn from the Source Menu (or press F4). The Source Assistant in Wing IDE Pro
also contains links to points of definition.

38

Try this from example2.py with some of the symbols imported from htmllib, such as
HTMLParser in the class definition for MyHTMLParser. Remember that the file htmllib.py

is opened in non-sticky mode and will auto-close unless you toggle the stick pin icon to

or edit the file.

Duplicate substitution definition name: “stickpin-stuck”.

Goto-Line -- Navigate quickly to a numbered source line with the Goto Line item in the
Edit menu. In emacs mode, the line number is typed into the data entry area that appears
at the bottom of the window. Press Enter to complete the action.

Keyboard-driven File Open -- Try the Open from Keyboard item in the File menu:
This displays an interactive file selector at the bottom of the IDE window that can be
much quicker for opening files than using the standard file selection dialog and allows file
selection without moving your hands from the keyboard. Use Esc to cancel or Enter to
select a file and the arrow keys to browse around the auto-completion list that it presents
as you type.

Auto-Indentation -- Wing auto-indents lines as you type according to its static analysis
of your code. This can be disabled with the Auto-Indent preference.

Another way in which Wing uses code analysis is in auto-indentation as you type, and for
altering indentation or wrapping of code. For example, when you select a block of code
and press the tab key, the entire block is re-indented according to the correct position of
its first line relative to the preceding non-blank line of code. The Justify Text option in
the Source menu also uses the source analyser to constrain re-wrapping to a single logical
line of Python code.

Block Indentation -- The Tab key is defined to indent the current line or blocks of lines,
rather then entering a tab character (which can be done with Ctrl-Tab). The Tab Key
Action preference can be used to customize how the tab key behaves.

One or more selected lines can be increased or reduced in indentation from the Indentation
toolbar group, which contains the following icons for this purpose:

Single lines or whole blocks can also be indented automatically to their appropriate position,
as determined by analysis of the preceding line. If a range of lines is selected, the whole

39

block is indented or outdented without changing the relative indents within the block. This
is done from the following toolbar icon:

Note that the indentation features are also available in the Source menu, where their key
bindings are listed.

Block Commenting -- Units of code can be commented out or un-commented quickly
from the Source menu.

Brace Matching -- Wing highlights brace matching as you type unless disabled from
the Auto Brace Match preference. The Match Braces item in the Source menu causes
Wing to select all the code that is contained in the nearest matching braces found from the
current insertion point on the editor. Repeated application of the command will traverse
outward and forward in the file.

Text Reformatting -- Code can be re-wrapped with the Justify Text item in the
Source menu. This will limit wrapping to a single logical line of code, so it can be used
for wrapping an argument list or long list or tuple without altering surrounding code.

Converting Indentation Styles -- Wing’s Indentation tool can be used to analyze
and convert the style of indentation found in source files. See Indentation Manager for
details.

Revision Control -- Wing provides integrations with the Subversion, Mercurial,
Bazaar, Git, CVS, and Perforce revision control systems. These auto-enable based on
the contents of your project. See the Version Control documentation for details.

Unit Testing -- Wing’s Testing tool makes it easy to run and debug units tests.

OS Commands -- The OS Commands tool can be used to set up, execute, and interact
with external commands, for building, deployment, and other tasks. The Build Command

field in Project Properties can be used to configure and select one command to execute
automatically before any debug session begins.

Code Snippets -- The Snippets tool in the Tools menu can be used to define and use
code snippets for commonly repeated motifs, such as class or def skeletons or documentation
templates. For details see the snippets documentation.

Bookmarks -- The Bookmarks tool in the Tools menu and bookmarking commands in
the Source menu can be used to define and jump to marked locations in the editor. In

40

Python files, these bookmarks are defined relative to the named scope in the file so they
move around as the file is edited. See bookmark documentation for details.

Folding -- Unless turned off with the Enable Folding preference, Wing allows folding
of editor code to hide areas that are not currently of interest. The folding is visual only
so selecting across a folding and copying will copy the text including its hidden portions.
Folding can be useful to get a quick summary of the contents of a source file. Refer to the
Folding manual page for details.

Macros -- Keyboard/command macros are available. See the Keyboard Macros section
of the manual for details.

1.12. Tutorial: Further Reading

Congratulations! You’ve finished the tutorial. As you work with Wing IDE on your own
software development project, the following resources may be useful:

• Wing IDE Support Website

• Wing IDE Reference Manual

• OS X Quickstart

• How-To Guides

http://wingware.com/support

